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CHAPTER 1. INTRODUCTION

1.1 Motivation

Turbulent flow (or turbulence) is one of the most challenging unresolved problems in clas-

sical physics. Typically, turbulent flow refers to the motions in fluids that are highly complex,

irregular, and three-dimensional. Turbulent flows are very common (in fact, much more com-

mon than laminar flows) and can be seen frequently in our daily life. The examples include

vortices which keep forming and breaking in rapids, the wave-like surface deformations in the

wakes of a boat, the many whirls in a wind in which the small ones rotate fallen leaves gently

while the huge ones may make a violent destruction. Turbulent flow can transport mass, mo-

mentum and energy more efficiently than laminar flow which is preferred in some situations

like the mixing of fuel and air in internal combustion engines; however, the turbulent motion

usually corresponds to higher drag, which along with its irregularity and complexity makes it

unpopular in lots of cases such as aircraft design. Whether we want to enhance it or suppress

it, a deep understanding of the physics of turbulent flow is always needed.

The modern attack on the turbulence problem has a history of 120 years starting from the

famous experiment of Reynolds in 1883. However, up to now, due to the difficulty of solv-

ing the nonlinear three-dimensional Navier-Stokes equations, analytical solutions of turbulent

flows are still rare and cannot meet the enormous requirement of engineering applications.

Although experimental studies relieve this dilemma to some extent, they are usually costly

and restricted by measurement techniques. The last two decades saw the rapid development

of computers, and computational fluid dynamics (CFD) became a more and more important

tool to give us insights into the phenomena and mechanisms of turbulence. Now, the role of

computational simulation is multifold: it can carry out “numerical experiments” at a much
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lower cost compared with real experiments; it can be used to visualize flow structures, uncover

new flow features, verify theoretical analysis, aid engineering designs and much more. It is

safe to say that computational simulation is now an indispensable component in the fluid me-

chanics research, and both industry and academia will benefit more and more from its growing

capability.

The most common methods which CFD tools utilize to compute turbulent flow can be

roughly put into four categories:

• Reynolds-averaged method based on the Reynolds-averaged Navier-Stokes equations

(RANS). Since these equations are not closed themselves, some closure methods must be

introduced to close the problem.

• Large eddy simulation (LES). The basic idea of this method is that only the large scale

motions are computed explicitly while the small scale motions are modeled. This method is

the focus of this thesis and more remarks will be given shortly.

• Direct numerical simulation (DNS), in which the Navier-Stokes equations are solved

directly without any models and all scales of motions are resolved. To achieve such a resolution,

sufficiently fine grids have to be used (the grid number is of the order of 9/4 power of Reynolds

number).

• Combinations of methods mentioned above. For example, the detached eddy simulation

(DES) employs the RANS method in the vicinity of solid walls while using LES away from the

walls and into the main stream.

In the above four types of methods, DNS is regarded as the most accurate, and DNS results

are usually used to verify and validate the other methods. However, since DNS has to use

extremely fine grids to resolve all motion scales, it requires exceptionally large computational

resources, especially for high Reynolds numbers, which severely limits its application. The

RANS method is usually inexpensive, but its accuracy suffers much because of the uncertainty

of the closure models. LES, which costs much less than DNS, but provides almost the same

capability, can be thought of as an ideal compromise of accuracy and economy.

In LES, a spatial filtering (or averaging) operation is applied to the governing equations
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and the filtered quantities correspond to the motions of scales larger than the filter size (so

called “large scales” or “large eddies”). Usually, the filter size is the same as the grid size. The

filtered equations are solved in a time accurate manner. Since in turbulent flows, the turbulent

fluctuations and viscous dissipation occur on a range of scales from the geometrical scale down

to the Kolmogorov scale, which is much smaller than the grid size in LES, the information

about the motions smaller than the grid size (so called “subgrid scale” or briefly, SGS) should

be given. In the filtered equations, the effects of these subgrid scale motions are reflected in

the so called subgrid scale stress and subgrid scale heat flux terms, which should be modeled.

More details will be given in later chapters.

The main motivations of this research are

• to extend the LES capability to turbulent duct flows subject to heat transfer and system

rotation. It is hoped that the present research will provide useful information to engineering

applications such as film cooling for turbine blades;

• to improve our understanding of the physics of the turbulent duct flows under rotation.

1.2 Objectives

The four main objectives of this thesis are listed below and discussed in more detail subse-

quently.

• Incorporate the Navier-Stokes characteristic boundary condition (NSCBC) into the lower-

upper symmetric Gauss-Seidel (LU-SGS) scheme to solve the filtered governing equations.

• Investigate the thermally developing turbulent duct flow under strong heating.

• Study the turbulent heat transfer in square ducts rotating about a spanwise axis.

• Analyse the velocity field and instability of rotating duct flow.

1.2.1 Incorporate NSCBC into LU-SGS Scheme

Despite its many advantages, unfortunately, the application of LES has been largely limited

to simple geometries. One important reason of this restriction is because most applications

of LES (and DNS, in fact) has relied on spatially periodic boundary conditions. Applications
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of non-periodic inflow and outflow boundary conditions which can at the same time sustain

a realistic turbulence level and cause small numerical errors are still scarce. Perhaps the

characteristic boundary condition (CBC) is a good choice. This method has been widely

used in CFD. A practical three-dimensional CBC called Navier-Stokes characteristic boundary

conditions (NSCBC) which was first developed by Thompson (1987, 1990) is especially fit

for our purpose. It can be expected that combining NSCBC with LES can greatly extend

the application of LES to complex geometries. However, from the search of literature one

can find that such endeavors are very rare, and more unusual are reports of the details of such

combinations. The reason may lie in an important feature of NSCBC: it has to be incorporated

into the original numerical scheme rather than being used separately (Anderson, 1995). Since

most LES and DNS codes use very sophisticated schemes, such incorporations usually become

very complex and tricky. In this thesis, details of the incorporation of NSCBC into the lower-

upper symmetric Gauss-Seidel (LU-SGS) scheme are given.

Another limitation of LES related to the periodic boundary condition is that it can be

hardly used in thermally developing compressible flows with strong heating or cooling. The

reason is that strong heating or cooling will change the properties (density, viscosity, thermal

conductivity, etc.) of the compressible flow significantly, thus, the mean and fluctuations of

the velocity field at the exit will be much different from those at the inlet which invalidates the

periodic assumption. For example, in strongly heated internal gas flows, the turbulence down-

stream may undergo a reverse transition to a laminar-like state which is sometimes referred

to as relaminarization. Such flows are of practical interest but beyond the ability of LES with

periodic boundary conditions. Using the NSCBC technique, however, we are able to carry out

such calculations without special difficulties.

A further improvement to the current NSCBC strategy is a so called “vanishing inviscid

flux derivative” method which is designed for the possible separation inside a heated rotating

duct when the buoyancy force is an opposing one. In this situation, the streamwise velocity

in some regions of the duct cross section will become negative (flow reversal) beyond the

separation point. This means some information from the outside of the domain has to be given
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so that the flow field at these regions can be solved. This is, of course, a tough job since such

information is usually unknown. To avoid such a situation, one can add an insulated buffer

zone to the exit so that the flow field can recover to the “normal” form. However, this method

can be awkward in two senses. First, the length of the buffer zone has to be determined in a

trial-and-error manner which is usually time consuming; second, the length of the buffer zone

changes with the problem parameters so that the whole calculation has to begin from the very

beginning rather than starting from the data obtained for a slightly different case. The current

“vanishing inviscid flux derivative” method, which is similar to the FLARE approximation for

boundary layer flow (Tannehill et al. 1997), enables us to compute the flow reversal without a

buffer zone and all those difficulties along with it.

1.2.2 Investigate the Thermally Developing Turbulent Duct Flow under Strong

Heating

As mentioned above, in strongly heated internal gas flows significant property variations

can arise. A reverse transition from turbulent to laminar state can occur. Such flows can find

their applications in gas-cooled nuclear reactors, nuclear propulsion systems, turbine blades

and so on. A comprehensive understanding of forced convection heat transfer with strongly

varying properties is crucial to these applications. Apart from the importance in engineering

applications, the research also justifies itself in the sense that it may help to clarify the concerns

about the validity of the extensively used law-of-the-wall for both velocity and temperature.

The present thesis considers the hydrodynamically developed turbulent air flow thermally

developing in a four-wall-heated square duct. The magnitude of heating is large enough to

cause significant property variations. From a search of the literature it seems no prior LES

(nor DNS) work of this class of flows has been reported.

1.2.3 Study the Turbulent Heat Transfer in Spanwise Rotating Square Ducts

Turbulent flow and related heat transfer inside a square duct rotating about an axis per-

pendicular to one of the walls (see Fig. 1.1) has many engineering applications such as internal
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cooling of turbine blades and automobile brakes. One of the primary concerns in these appli-

cations is the heat transfer coefficients on each wall of the duct. The complexity of this class

of flows is largely due to the mutual influence between velocity field and temperature field

through the effects of the Coriolis and centrifugal buoyancy forces.
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Figure 1.1 Flow in a rotating square duct

Although extensive experiments and numerical simulations based on the RANS method

have been carried out on this topic, relatively few DNS and LES results are available. In

the limited DNS/LES literature, most of the focus was on the fully developed region. In the

present research the hydrodynamically developed turbulent air flow thermally developing in

a four-wall-heated rotating square duct is simulated over a wide range of Reynolds number,

rotation number and Grashof number. Numerous aspects of the flow including mean velocity,

secondary flow pattern, turbulent kinetic energy, temperature fluctuation intensity, local tem-

perature distributions and shear stress distributions, local and wall-averaged Nusselt numbers

are investigated. A delicate mechanism through which the Coriolis and centrifugal forces affect

the mixed convection is found to be able to explain much of the phenomena observed.
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1.2.4 Analyze the Velocity Field and Instability of Rotating Duct Flow

To reach a better understanding of the physics of rotating duct flow, it is desired to the-

oretically determine the velocity field in a rotating square duct. A secondary flow pattern is

formed due to the effects of the Coriolis force (see Fig. 1.1). This pattern includes two types of

boundary layers which are of great importance in the study of rotating fluid flows, namely the

Ekman layer and the Stewartson layer. A linear Stewartson layer solution, a non-linear Ekman

layer solution and a local similarity assumption are combined together to give the velocity field.

The secondary flow pattern can be composed of either one pair or two pairs of rotating

vortices. One may be curious about the factors that determine the pair numbers. An instability

analysis is carried out to obtain a criterion of marginal stability. There are several other

instability phenomena that occur at different locations in the duct under different situations.

These instabilities are also explored theoretically in the present thesis.

One reason why the instability analysis is important is that the mean velocity profile

changes due to such instabilities. Our results may contribute to the understanding of the

non-linear interaction processes between mean flow and disturbances.

1.3 Review of Turbulent Flows in Rotating Ducts

This section gives a brief literature review of previous researches that have been conducted

on turbulent rotating duct flows. This review is intended to provide background information

on this topic. More specific references will be cited in the appropriate chapters later.

The main application of the rotating duct flows is for cooling of turbine blades. To achieve

a high power-to-weight ratio, increasing inlet temperatures is preferred in gas turbine design.

This high inlet temperature usually exceeds the temperature which the blade material can

resist. Therefore a sophisticated cooling system is needed to protect the blades from melting.

A widely used method for this purpose is to draw low temperature air from the compressor as

coolant and circulate it through passages inside the blades to provide internal cooling. Also the

circulating air can exit from specific holes on the blade surface for film cooling. Typically the

internal coolant passages are straight ducts connected by 180 degree bends and ribs are usually
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installed to the duct walls to enhance heat transfer. Besides the heat transfer performance,

minimizing pressure loss is also crucial to achieve an efficient cooling since the coolant flow is

driven by the turbine itself.

To understand the flow and heat transfer in the rotating internal coolant passages, numer-

ous investigations have been carried out. These investigations can be put into three categories:

experiments, numerical simulations and theoretical analyses.

1.3.1 Experiments

The early experiments on rotating duct flows and closely related rotating channel flows

were focused on the measurements of pressure drop and integral parameters like heat transfer

coefficients.

Though it is hard to find out who did the first experiment of this type, the work of Johnston

et al. (1972) on turbulent rotating channel flows can be regarded as a milestone. They used

hydrogen bubbles and dye injection to visualize the suppression and enhancement of turbulence

on the stable and unstable sides of the channel. Their experiments also showed the cellular

structure in the unstable side of the channel. Mårtensson et al. (2002) investigated the

influence of rotation on the pressure drop in both square and rectangular ducts. They also

studied the effects of the angle between the rotation vector and the main axis of the duct.

The range of Reynolds number of their experiments was from 5,000 to 30,000 and the rotation

number was from 0 to 1.0.

The experimental data on the details of the flow field are difficult and costly to obtain

under rotation conditions. As a consequence, such data were limited until recently. Bons and

Kerrebrock (1998) used particle image velocimetry (PIV) to measure the mean velocity of

the turbulent flows in a rotating square duct with Reynolds number from 8,000 to 10,000 and

rotation number from 0 to 0.3. Liou et al. (2003) reported laser-Doppler velocimetry (LDV)

measurements of both mean velocity and turbulent fluctuations in a rotating two pass duct

with Reynolds number fixed at 10,000 and rotation numbers up to 0.2.

The effects of rotation on heat transfer have been studied extensively. Morris and Ayhan
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(1979) were first to incorporate the effect of centrifugal buoyancy to explain the observed heat

transfer phenomena in a rotating circular tube. Medwell et al. (1991) did experiments on

a rotating circular tube flow and gave the axial distributions of Nusselt number as well as

temperature. Morris and Ghavami-Nasr (1991) carried out experiments on a rotating rect-

angular channel and studied the effects of Reynolds number and rotation number on the heat

transfer coefficients. Wagner et al. (1991a, 1991b) systematically investigated the influences

of Reynolds number, rotation number, density ratio and flow direction on the heat transfer in

rotating cooling passages. Han et al. (1992, 1993, 1994) performed experiments on rotating

square ducts under three different thermal boundary conditions, namely uniform wall temper-

ature, uniform wall heat flux and uneven wall temperatures. They found that the constant

wall heat flux condition gave a higher Nusselt number on both stable and unstable sides than

the constant wall temperature case with otherwise the same conditions.

Most heat transfer experiments mentioned above used thermocouples so that the results

were discrete and regional averaged values. The measurements of the details of the temperature

field inside a rotating cooling passage, and the details of flow field, were not available till very

recently. Liou et al. (2001) used transient liquid crystal thermometry (TLCT) technology to

perform detailed measurements of the heat transfer coefficient in a rotating square duct.

1.3.2 Numerical Simulations

Most numerical studies on rotating turbulent duct flows were based on the RANS methods,

for example, the work of Iacovides and Launder (1991), Prakash and Zerkle (1992), Tekriwal

(1994), Tolpadi (1994), Bo et al. (1995), Dutta et al. (1996), Hwang et al. (1998), Lin et

al. (2001) and Belhoucine et al. (2004). Relatively few DNS or LES studies are available.

Kristoffersen and Andersson (1993) did direct numerical simulations of fully developed turbu-

lent flow in a rotating channel. The Reynolds number was 2900 and the rotation number varied

from 0 to 0.5. Their simulation showed an appreciable region in the mean velocity profile with

slope of twice the angular velocity, which was in accordance with the experiments of Johnston

et al. (1972). Also their results revealed the nearly complete suppression of turbulence in the
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vicinity of the stable side at high rotation number. Alvelius (1999) also carried out a DNS

study for rotating channel flows in his PhD thesis.

Gavrilakis (2004) performed DNS for fully developed turbulent flows in a rotating square

duct. He simulated both the common cases with rotation axis parallel to the wall and the tilted

rotating cases in which the rotation axis was parallel to the diagonal. The Reynolds number

was fixed at 4,500 and the rotation numbers were 0.0133 and 0.0266. Mårtensson et al. (2004)

carried out a DNS study very similar to that of Gavrilakis. In this work, the Reynolds number

was 4,400 and rotation number was up to 0.77. They also simulated the tilted rotating duct

cases. These two studies are the only available DNS results for rotating ducts according to the

author’s knowledge.

Tafti and Vanka (1991) used LES to simulate the turbulent flow in a rotating channel. The

streamwise velocity, and the formation of spanwise roll cells were major concerns in this study.

This point will be further discussed in the next section. Piomelli and Liu (1995) also did LES

simulations of rotating channel flows and in this work they proposed a “localized dynamic SGS

model” which will be used in this thesis. Pallares and Davidson (2000) did LES of turbulent

flows in rotating channels and in a stationary square duct. Their results agreed with the DNS of

Alvelius (1999) very well. Pallares and Davidson (2002) did LES of turbulent heat transfer in

both stationary and rotating square ducts. In this study, the rotating duct flows were assumed

to be hydrodynamically and thermally fully developed. A uniform heat flux condition was

applied at the four walls. It was found that the turbulence level was strongly affected by the

centrifugal buoyancy forces. The overall Nusselt numbers and the turbulence levels were not

greatly influenced by the thermal boundary conditions. Murata and Mochizuki (1999, 2001,

2004) did a series of LES studies of turbulent heat transfer in rotating duct flows in which the

effects of cross section aspect ratio, ribs and 180 degree turns were explored. Sewall and Tafti

(2005) studied the flow and heat transfer in the developing region of a rotating ribbed turbine

blade cooling channel. The Reynolds number was 20,000, the rotation number was 0.3 and

four buoyancy parameters were calculated: 0.0, 0.25, 0.45 and 0.65. Their results were found

to be in very good agreement with previous experimental results.
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It should be noticed that all these recent LES researches did not take into account the

effects of coolant property variations, which can hardly be justified in heat transfer situations.

Salinas Vázquez and Métais (2002) performed LES for a compressible turbulent square duct

flow under heating. Lee et al. (2004) did LES to explore the effects of rotation on the heat

transfer in compressible turbulent channel flows. However, no LES of rotating turbulent duct

flow with property variations has been reported.

1.3.3 Theoretical Analysis

The theoretical analyses of the rotating duct flows are quite limited. One reason may be,

as Greenspan indicated in the preface of his classical text book The theory of the rotating fluids

and quoted here, this problem lies in a field which is still “in the process of rapid and diverse

growth” (Greenspan, 1968).

Two boundary layers of central importance in internal rotating flows are the Ekman layer

and the Stewartson layer, bearing the names of their discoverers (Ekman, 1905; Stewartson,

1957). Both of these layers appear in rotating pipe flows. Benton and Boyer (1966) studied

the flow in a rapidly rotating conduit of arbitrary cross-section. They treated the boundary

layer around the periphery as an Ekman layer and the cross sections which have a finite part

of their boundaries parallel to the axis of rotation (for example, the situation which is the

focus of the present thesis) were excluded because of singularities. Bennetts and Hocking

(1973) developed a nonlinear Ekman condition based on the local similarity assumption. The

same authors used this condition with some modifications in examining the pressure-induced

flows at high rotation numbers (Bennetts and Hocking, 1974). Smirnov (1978) developed a

drag formula for rapidly rotating rectangular ducts. Smirnov also gave an explicit expression

for the flow field with the linear theory. All of these authors considered only laminar flows.

An attempt to obtain a drag formula for the turbulent rotating duct was recently attempted

(Pallares et al., 2005), however, only the Ekman layers were considered and the drag formula

was a half-empirical one.

For the instability analysis of rotating channel flow, Taylor (1923) was the first one who
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treated the instability problem in viscous flow both theoretically and experimentally. Due to

the interests of relating the origin of turbulence with instability of laminar flows, this topic

has been extensively studied since then. Details of the development can be seen in books

of Lin (1955), Chandrasekhar (1961) and Drazin and Reid (2004). Lezius and Johnston

(1976) studied the stability of rotating laminar and turbulent channel flows using the method

of Chandrasekhar and obtained good agreement with their experiments. Kheshgi and Scriven

(1985) analyzed fully developed viscous flow through a rotating square duct with a given

pressure gradient using the finite element method. In this work, critical Rossby numbers were

obtained through extensive computational simulations of different combinations of Rossby

number and Ekman number. It can be seen that the secondary flow pattern and critical

Rossby numbers are very different between rotating channels and ducts. Such differences may

be attributed to the effects of the Ekman layer. Busse (1968) gave a theoretical description

for infinitesimal non-axisymmetric disturbances of a shear flow caused by differential rotation.

His method was inspired and then generalized by the work of Greenspan (1968). An Orr-

Sommerfeld type equation can be obtained from Busse’s treatment. However, Busse restricted

himself in the limit to an infinite Reynolds number (Rayleigh stability equation). Until now,

there is no available stability analysis for the rotating duct flows according to the author’s best

knowledge.

1.4 Dissertation Organization

The dissertation is organized in the following way:

Chapter 2 describes the governing equations, the filtering procedure, the sub-grid scale

(SGS) models and the finite volume formulations which were used in the current large eddy

simulations (LES). This chapter highlights the different SGS models and boundary conditions.

The details of the process of incorporating Navier-Stokes characteristic boundary conditions

(NSCBC) into the lower-upper symmetric Gauss-Seidel (LU-SGS) scheme will be presented in

Chapter 3. The validity of this strategy is verified through simulation of several benchmark

flows.
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The results of thermally developing turbulent stationary duct flows under different heating

are reported in Chapter 4. The counterpart of the rotating duct flows are given in Chapter 5.

In Chapter 4, the effects of strong heating on the flow field, turbulent intensity and pressure

loss are emphasized. In Chapter 5, the effects of Coriolis and centrifugal buoyancy forces are

the main interests of the research and are stressed.

Chapter 6 is dedicated to the theoretical aspect of this subject. First the velocity field of

the fully developed incompressible laminar flow inside a rotating square duct is investigated

and then an instability analysis is carried out.

The conclusions of this research, as well as recommendations for future work can be found

in Chapter 7.
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CHAPTER 2. GOVERNING EQUATIONS AND NUMERICAL

SCHEMES

In this chapter, the non-dimensional compressible filtered Navier-Stokes equations used for

LES are derived. The sub-grid scale models required to close the equations are described. The

numerical schemes used to solve the resultant equations are then presented.

2.1 Governing Equations

The compressible Navier-Stokes equations can be written in vector form as

∂U∗

∂t∗
+

∂F∗
i

∂x∗
i

= S∗. (2.1)

The vector quantities are

U∗ =


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∗
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jσ
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ij + q∗i
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. (2.2)

In the above vectors, E∗ is the total specific energy, that is the sum of the specific internal

energy and the specific kinetic energy: E∗ = e∗ + 1
2u∗

i u
∗
i . The stress tensor is given as

σ∗
ij = −p∗δij + 2µ∗(S∗

ij −
1

3
S∗

kkδij), (2.3)

where δ is the Kronecker delta and S∗
ij is the strain rate tensor

S∗
ij =

1

2
(
∂u∗

i

∂x∗
j

+
∂u∗

j

∂x∗
i

). (2.4)
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The heat flux q∗i is determined by Fourier’s law:

q∗i = −k∗∂T ∗

∂x∗
i

. (2.5)

The source term S∗ is 0 if there is no external force fields, otherwise it will contain the

force terms, actual or fictional (apparent). For example, if the coordinates are attached to a

rotating frame, the fluid flow will feel both Coriolis forces and a centrifugal force which should

be included in S∗. In LES and DNS, it is very common to apply periodic boundary conditions

to some dimensions of the computational domain. If such a boundary condition is used in the

flow direction, a forcing function equivalent to the mean pressure force has to be employed in

the source term to drive the flow.

The ideal gas model is used to close the above equations since air is the working fluid in

most of the film cooling applications. The equation of state for the ideal gas model is

p∗ = ρ∗R∗T ∗, (2.6)

where R∗ is the gas constant. And for an ideal gas the specific internal energy is e∗ = c∗vT
∗.

The properties µ∗ and k∗ are the molecular dynamic viscosity and thermal conductivity,

respectively. Both of them are functions of temperature that can be derived from molecular

dynamics theory (eg. Lectures on gas theory of L. Boltzmann). For simplicity, the power law

will be used throughout this research, that is, both µ∗ and k∗ are proportional to the 0.71

power of the absolute temperature T ∗.

The above dimensional equations (denoted by asterisks) can be non-dimensionalized with

respect to appropriate dimensional reference quantities as described below

xi =
x∗

i

Lref

p = p∗

ρref U2
ref

e = e∗

U2
ref

cv = c∗v
U2

ref
/Tref

t = t∗

Lref /Uref

ρ = ρ∗

ρref

µ = µ∗

µref

cp =
c∗p

U2
ref

/Tref

ui =
u∗

i

Uref

T = T ∗

Tref

k = k∗

kref

R = R∗

U2
ref

/Tref
.

(2.7)

In this research, the hydraulic diameter is chosen as the reference length Lref . Uref , Tref , ρref

are the mean values of corresponding quantities at the duct inlet. µref and kref are the values

of corresponding properties at Tref .
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Using the above definitions, the non-dimensional form of the governing equations is

∂U

∂t
+

∂Fi

∂xi
= S, (2.8)

with

U =




ρ

ρu1

ρu2

ρu3

ρE




; Fi =




ρui

ρuiu1 − σi1

ρuiu2 − σi2

ρuiu3 − σi3

ρEui − ujσij + qi




. (2.9)

The non-dimensional stress tensor, strain rate tensor and heat flux vector are

σij = −pδij +
2µ

Re
(Sij −

1

3
Skkδij), (2.10)

Sij =
1

2
(
∂ui

∂xj
+

∂uj

∂xi
), (2.11)

qi = − cpµ

PrRe

∂T

∂xi
. (2.12)

Re is the Reynolds number and Pr is the Prandtl number. Their definitions are

Re =
ρrefUrefLref

µref
, (2.13)

Pr =
µ∗c∗p
k∗

. (2.14)

2.2 Filtering

Large eddy simulation resolves only the large scales and models the small scales of the flow.

To separate the effects of the large-scale and small scale motions, a filtering operation should

be applied to the Navier-Stokes equations. The filtering operation is defined as

f̄(x, t) =

∫
G(|r| ; ∆)f(x − r, t)dr, (2.15)

where integration is over the entire flow domain, and the specified filter function G satisfies

the normalization condition ∫
G(|r| ; ∆)dr = 1. (2.16)
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Several filter functions have been applied to LES such as the sharp Fourier cut-off filter,

Gaussian filter, box filter, top-hat filter, etc. In the present thesis, the top-hat filter is used,

which is defined as

G(|r| ; ∆) =





1/∆ if |r| ≤ ∆/2

0 if |r| > ∆/2
(2.17)

where ∆ is the filter width. This filter is a very natural choice when finite-volume or finite-

difference methods are used because by setting ∆ the same as the grid resolution this filtering

process reduces to an average over a control volume. Since our tacit understanding about the

value of a variable at one control volume is indeed the average value of this variable over the

control volume, this is by itself a top-hat filtering process and no more explicit filtering is

needed!

In the present research, an anisotropic rectangular grid with grid spacings ∆1, ∆2, and ∆3

in the three coordinate directions was used in most of the cases; then the filter width ∆ was

taken to be ∆ = (∆1∆2∆3)
1/3 as suggested by Deardorff (1970).

As a result of the filtering operation, the flow field can be viewed as being decomposed into

two components:

f = f̄ + f ′, (2.18)

where f̄ is the filtered scale, or large scale, or resolved scale component; and f ′ is the small

scale, or unresolved scale, or subgrid scale component. This looks analogous to the Reynolds

decomposition. An important difference, however, is that LES uses a spatial average rather

than a temporal average in the filtering procedure. As a result, the filtering operation and

differentiating with respect to time commute, i.e.,

∂f̄

∂t
=

∂f

∂t
. (2.19)

However, the filtering operation and differentiation with respect to position do not commute in

general unless the filter width is constant, and the commutation error is second order in filter

width (Ghosal and Moin, 1995). To avoid this difficulty, one can filter only in the homogeneous

directions. If the numerical scheme is of second order, however, the filtering operation can be

treated to commute with the differentiation with respect to position.
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If the filtering operation is applied to the nondimensional governing equations (Eq. (2.8)

and Eq. (2.9)), terms like ρui, ρuiuj and ρuiT appear. To simplify the equations, Favre

filtering (Favre, 1983) is introduced to give

f̃ =
ρf

ρ̄
. (2.20)

Thus, the variables can be decomposed in another way besides Eq. (2.18):

f = f̃ + f ′′, (2.21)

where f̃ is the resolved component and f ′′ is the unresolved component. Using Favre filtering,

we have

ρui = ρ̄ũi; ρuiuj = ρ̄ũiuj ; ρuiT = ρ̄ũiT . (2.22)

The Favre filtered continuity and momentum equations can be easily derived (assuming

the source term S = 0):

∂ρ̄

∂t
+

∂(ρ̄ũj)

∂xj
= 0, (2.23)

∂(ρ̄ũi)

∂t
+

∂(ρ̄ũiũj)

∂xj
=

∂σ̄ij

∂xj
− ∂τij

∂xj
, (2.24)

in which

σ̄ij = −pδij +
2µ

Re
(Sij −

1

3
Skkδij) = −p̄δij +

2µ

Re
(Sij −

1

3
Skkδij)

≈ σ̂ij = −p̄δij +
2µ̄

Re
(S̃ij −

1

3
S̃kkδij), (2.25)

τij = ρ̄(ũiuj − ũiũj). (2.26)

The approximation made in Eq. (2.25) is due to the weak correlation between µ and derivatives

of velocity (Cebeci and Smith, 1974). Compared with the original momentum equations, the

filtered form has one more term associated with the so-called subgrid scale (SGS) stress tensor

τij which represents the effect of the small-scale motions. The strain rate tensor is

S̃ij =
1

2
(
∂ũi

∂xj
+

∂ũj

∂xi
). (2.27)
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The deduction of the filtered equation for conservation of total energy is somewhat more

complex. First, the thermal energy equation is used

∂(ρcvT )

∂t
+

∂(ρcvTuj)

∂xj
= σij

∂ui

∂xj
− ∂qj

∂xj
. (2.28)

Applying the filtering operation to the above equation leads to

∂(ρ̄cvT̃ )

∂t
+

∂(ρ̄cvT̃ ũj)

∂xj
= σij

∂ui

∂xj
− ∂q̄j

∂xj
− ∂φj

∂xj
, (2.29)

in which φj = ρ̄cv(T̃ uj − T̃ ũj) is the SGS heat flux. Notice the specific heat cv is regarded as

a constant since the ideal gas model is used. The filtered heat flux q̄j can be approximated as

q̄j = − cpµ

PrRe

∂T

∂xj
≈ q̂j = − cpµ̄

P rRe

∂T̃

∂xj
(2.30)

by assuming the correlation between viscosity and temperature derivative is weak. If we expand

the filtered momentum equation, Eq. (2.24), we can obtain

ρ̄
∂ũi

∂t
+ ũi

[
∂ρ̄

∂t
+

∂(ρ̄ũj)

∂xj

]
+ ρ̄ũj

∂ũi

∂xj
=

∂σ̄ij

∂xj
− ∂τij

∂xj
, (2.31)

and the term inside the square brackets vanishes due to continuity (Eq.(2.23)) . Multiplying

Eq. (2.31) by ũi and adding to the filtered internal energy equation, Eq. (2.29), gives

∂(ρ̄cvT̃ )

∂t
+

∂(ρ̄cvT̃ ũj)

∂xj
+

ρ̄
∂(1

2 ũiũi)

∂t
+ ρ̄ũj

∂(1
2 ũiũi)

∂xj
=

σij
∂ui

∂xj
− ∂q̄j

∂xj
− ∂φj

∂xj
+

ũi
∂σ̄ij

∂xj
− ũi

∂τij

∂xj
. (2.32)

The filtered continuity equation, Eq.(2.23), is then multiplied by 1
2 ũiũi and added to Eq. (2.32)

and results in

∂(ρ̄cvT̃ )

∂t
+ ρ̄

∂(1
2 ũiũi)

∂t
+

1

2
ũiũi

∂ρ̄

∂t
+

∂(ρ̄cvT̃ ũj)

∂xj
+ ρ̄ũj

∂(1
2 ũiũi)

∂xj
+

1

2
ũiũi

∂(ρ̄ũj)

∂xj
=

σij
∂ui

∂xj
− ∂q̄j

∂xj
− ∂φj

∂xj
+ ũi

∂σ̄ij

∂xj
− ũi

∂τij

∂xj
. (2.33)
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By combining terms we have

∂(ρ̄Ê)

∂t
+

∂(ρ̄Êũj)

∂xj
= σij

∂ui

∂xj
− ∂q̂j

∂xj
− ∂φj

∂xj
+ ũi

∂σ̂ij

∂xj
− ũi

∂τij

∂xj
, (2.34)

where Ê = ẽ+ 1
2 ũiũi and σ̄ij and q̄j are replaced by their approximations σ̂ij and q̂j respectively.

This equation can be rewritten as

∂(ρ̄Ê)

∂t
+

∂(ρ̄Êũj)

∂xj
=

∂(ũiσ̂ij)

∂xj
− ∂q̂j

∂xj
− ∂φj

∂xj
− α − ε, (2.35)

where

α = ũi
∂τij

∂xj
;

ε = σij
∂ui

∂xj
− σ̂ij

∂ũj

∂xj
. (2.36)

For the present work, α and ε are neglected which is appropriate when Mach number is less

than 0.2 (Vreman et al. 1995). The last governing equation, the equation of state, can be

easily filtered: p̄ = ρ̄RT̃ .

Thus, the filtered governing equations can be written in vector form as

∂U

∂t
+

∂Fi

∂xi
= S, (2.37)

with

U =




ρ̄

ρ̄ũ1

ρ̄ũ2

ρ̄ũ3

ρ̄Ê




; Fi =




ρ̄ũi

ρ̄ũiũ1 − σ̂i1 + τi1

ρ̄ũiũ2 − σ̂i2 + τi2

ρ̄ũiũ3 − σ̂i3 + τi3

ρ̄Êũi − ũj σ̂ij + q̂i + φi




, (2.38)

in which the SGS stress tensor τij and SGS heat flux φj have to be modeled to close the system

of equations. These models are called subgrid scale (SGS) models.

2.3 Subgrid Scale Model

The role of SGS models in LES is analogous to the turbulence models for the Reynolds

averaged Navier-Stokes (RANS) equations. Because the LES uses spatial average and the SGS
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terms represent the effects of the small-scale motion which is, by and large, isotropic, the SGS

models have an advantage of being more universal than RANS models.

Numerous SGS models have been used in LES. A recent review of SGS modeling techniques

can be found in Meneveau and Katz (2000).

The filtered strain rate tensor is

S̃ij =
1

2
(
∂ũi

∂xj
+

∂ũj

∂xi
). (2.39)

The magnitude of the filtered strain rate tensor is defined as

S̃ = (2S̃ijS̃ij)
1/2. (2.40)

Both of these quantities are widely used in SGS models. The SGS stress tensor, τij can be

decomposed into two parts, the anisotropic part and the isotropic part as

τij = ρ̄(ũiuj − ũiũj) = τa
ij +

1

3
τkkδij . (2.41)

The most widely used SGS modeling approach is the eddy viscosity methodology which

assumes the anisotropic part of the SGS stress tensor to be proportional to the filtered rate of

strain:

τa
ij = −2µt(S̃ij −

1

3
S̃kkδij). (2.42)

The above equation includes the S̃kk term due to the flow compressibility.

The isotropic part τkk is negligible compared to the thermodynamic pressure as Moin et

al. (1991) and Spyropoulos and Blaisdell (1995) indicated. Vreman et al. (1995) and Dailey

(1997) observed that the calculation was unstable if the isotropic part was not neglected. In the

present work, τkk is neglected. Then the question left is how to determine the eddy viscosity

µt. The simplest model is that proposed by Smagorinsky (1963), which also forms the basis

for the more advanced dynamic models.

2.3.1 Smagorinsky Model

By analogy to the Prandtl’s mixing-length hypothesis, the eddy viscosity is modeled as

µt = ρ̄L2
sS̃ = ρ̄Cs∆

2S̃, (2.43)
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where Ls is the Smagorinsky length scale and Cs is the Smagorinsky coefficient which is a

positive constant in this model. It is easy to see the shortcoming of this model: the Smagorin-

sky coefficient should in fact depend on factors like flow regimes, distance to the walls, grid

scales, etc., so it cannot be a constant. For example, in laminar flow or close to a solid wall,

this coefficient should be zero. Though it is possible to modify the Smagorinsky coefficient

formula to take these factors into account, the dynamic model which will be discussed shortly

is considered as more satisfactory because the dynamic model can determine the appropriate

local Smagorinsky coefficient without any a priori parameters.

2.3.2 Dynamic Model

The dynamic model was proposed by Germano et al. (1991). It assumes that inside a

proper size neighborhood of any point within a flow field, the Smagorinsky coefficient is the

same. To exploit this assumption, a test filter has to be introduced besides the grid filter. As

mentioned in the last section, the grid filter width is ∆ = (∆1∆2∆3)
1/3 where ∆i is the grid

spacing in the ith direction. The operation of grid filtering is defined as

f̄(x, t) =

∫
G(|r| ; ∆)f(x − r, t)dr. (2.44)

The LES equations are intended to be solved for f̄ (or with Favre average, f̃), though this

filtering is not explicitly performed. The test filter has filter width ∆̂, which is typically taken

to be twice ∆. The test filtering operation is similarly defined as

f̂(x, t) =

∫
G(|r| ; ∆̂)f(x − r, t)dr. (2.45)

However, the test filtering is deemed to be applied to the filtered flow field rather than the

original un-filtered one since the latter is unknown. And this test filtering operation should

be explicitly performed. We first show how to calculate the local Smagorinsky coefficient Cs

“dynamically”.

The subgrid scale and subtest scale stresses based on the single- and double-filtering oper-

ations are defined as

τij = ρ̄ũiuj − ρ̄ũiũj = ρuiuj −
ρui ρuj

ρ̄
;
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Tij = ρ̂uiuj −
ρ̂ui ρ̂uj

ˆ̄ρ
= ̂̄ρũiuj −

̂̄ρũi
̂̄ρũj

ˆ̄ρ
. (2.46)

According to the Smagorinsky model, the anisotropic part of the SGS stress is determined by

τa
ij = τij −

1

3
τkkδij = −2µt(S̃ij −

1

3
S̃kkδij) = −2ρ̄Cs∆

2S̃(S̃ij −
1

3
S̃kkδij) = Csβij . (2.47)

Similarly, the subtest scale stress is modeled as

T a
ij = Tij −

1

3
Tkkδij = −2µ̂t(

ˆ̃Sij −
1

3
ˆ̃Skkδij) = −2ˆ̄ρCs∆̂

2 ˆ̃S(ˆ̃Sij −
1

3
ˆ̃Skkδij) = Csαij , (2.48)

where ˆ̃Sij = 1
2( ∂ ˆ̃ui

∂xj
+

∂ ˆ̃uj

∂xi
). An identity due to Germano (1992) is obtained by

Lij = Tij − τ̂ij = ̂̄ρũiũj −
̂̄ρũi

̂̄ρũj

ˆ̄ρ
. (2.49)

Thus, we have

La
ij = Lij −

1

3
Lkkδij = Csαij − Ĉsβij ≈ Cs(αij − β̂ij). (2.50)

Notice both La
ij and αij − β̂ij are known in terms of ũi and ũj . This information can be used

to determine the value of Cs. Of course, a single Cs cannot satisfy the total of six independent

components of La
ij . However, as Lilly (1992) showed, the sum of the squares of the error can

be minimized by contracting both sides of Eq. (2.50) with αij − β̂ij to yield:

Cs =

〈
La

ij(αij − β̂ij)
〉

〈
(αmn − β̂mn)(αmn − β̂mn)

〉 , (2.51)

where 〈·〉 denotes a spatial averaging procedure along the homogeneous directions of the flow.

Such a procedure is necessary to ensure the stability of LES calculations.

The SGS heat flux vector, φj , can be modeled similarly. First, the subtest scale heat flux

Qj is defined following φj as

φj = cv(ρ̄T̃ uj − ρ̄T̃ ũj) = cv(ρTuj −
ρT ρuj

ρ̄
);

Qj = cv(ρ̂Tuj −
ρ̂T ρ̂uj

ˆ̄ρ
) =

̂
ρ̄T̃ uj −

̂̄ρT̃̂̄ρũj

ˆ̄ρ
. (2.52)

Then the heat fluxes are modeled as

φj = −cvµt

Prt

∂T̃

∂xj
=

χj

Prt
;

Qj = −cvµ̂t

Prt

∂ ˆ̃T

∂xj
=

ζj

Prt
, (2.53)
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where Prt is the turbulent Prandtl number to be determined dynamically. µt and µ̂t are the

same as those defined in Eqs. (2.47) and (2.48). The identity relating the two heat fluxes is

Mj = Qj − φ̂j = cv(
̂ρ̄T̃ ũj −

̂̄ρT̃̂̄ρũj

ˆ̄ρ
) =

ζj − χ̂j

Prt
. (2.54)

Thus, we have

Prt =
〈(ζj − χ̂j)(ζj − χ̂j)〉
〈Mn(ζn − χ̂n)〉 , (2.55)

where 〈·〉 still denotes a spatial averaging along the homogeneous directions of the flow. This

dynamic model was successfully used by Wang and Pletcher (1996), Xu et al. (2004) and

many other authors.

Now a new problem arises: what if there is no homogeneous direction at all? In fact it is

the case for lots of situations including the developing flow in a square duct. A solution to

this problem is the so called localized dynamic model which was developed by Ghosal et al.

(1995). Here we describe a simpler version due to Piomelli and Liu (1995).

2.3.3 Localized Dynamic Model

Equation (2.50) is recast in the form

La
ij = Csαij − Ĉ∗

s βij , (2.56)

where C∗
s is an estimate of the coefficient and assumed to be known. In the present research, the

value at the previous time-step is used as C∗
s . The initial value of Cs is set to the Smagorinsky

constant. Since C∗
s is known, Cs can be obtained by

Cs =

〈
(La

ij + Ĉ∗
s βij)αij

αmnαmn

〉
, (2.57)

where 〈·〉 is an averaging performed locally over the test filter volume.

The turbulent Prandtl number is determined similarly:

Prt =

〈
ζnζn

(Mj + χ̂j/Pr∗t )ζj

〉
. (2.58)
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2.4 Finite Volume Based Numerical Scheme

2.4.1 Integral Form of Equations

Though the conserved variables (ρ̄, ρ̄ũi, ρ̄Ẽ) are often used as dependent variables, primitive

variables (p̄, ũi, T̃ ) are preferable at low Mach numbers since under such situations computing

the pressure from the equation of state with codes using the conserved variables can result in

significant roundoff errors (Shuen et al., 1992).

We choose the set of variables W = (p̄, ũ1, ũ2, ũ3, T̃ )T as the primitive variables, and the

governing equations (2.37) can be recast in terms of W as

∂U

∂W

∂W

∂t
+

∂Fi

∂xi
= S. (2.59)

By replacing density with pressure and temperature and then multiplying by the gas constant

throughout, the terms in the above equation become

U =




p̄/T̃

p̄ũ1/T̃

p̄ũ2/T̃

p̄ũ3/T̃

p̄Ê/T̃




; Fi =




p̄ũi/T̃

p̄ũiũ1/T̃ − Rσ̂i1 + Rτi1

p̄ũiũ2/T̃ − Rσ̂i2 + Rτi2

p̄ũiũ3/T̃ − Rσ̂i3 + Rτi3

p̄ũiÊ/T̃ − Rũj σ̂ij + Rq̂i + Rφi




, (2.60)

where

Ê = cvT̃ +
1

2
(ũkũk);

σ̂ij = −p̄δij +
2µ̄

Re
(S̃ij −

1

3
S̃kkδij);

S̃ij =
1

2
(
∂ũi

∂xj
+

∂ũj

∂xi
); (2.61)

τij = −2µt(S̃ij −
1

3
S̃kkδij);

q̂i = − cpµ̄

P rRe

∂T̃

∂xi
;

φi = −cvµt

Prt

∂T̃

∂xi
.

It is usually advantageous to split the flux vector Fi into three parts, namely, the inviscid
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part Fi, the viscous part Fi and the subgrid-scale part Fi. They are defined as

Fi = Fi − Fi + Fi. (2.62)

Fi =




p̄ũi/T̃

p̄ũiũ1/T̃ + Rp̄δi1

p̄ũiũ2/T̃ + Rp̄δi1

p̄ũiũ3/T̃ + Rp̄δi1

p̄ũiĤ/T̃




; Fi =




0

RV̂i1

RV̂i2

RV̂i3

Rũj V̂ij − Rq̂i




; Fi =




0

Rτi1

Rτi2

Rτi3

Rφi




, (2.63)

in which the stress tensor σ̂ij is decomposed into two parts: pressure tensor −p̄δij and the

viscous stress tensor V̂ij = 2µ̄
Re(S̃ij − 1

3 S̃kkδij). The contribution of pressure is included in the

inviscid flux. Note the use of specific total enthalpy Ĥ = Ê + RT̃ = cpT̃ + 1
2(ũkũk).

By integrating throughout a control volume Ω and using the Gauss divergence theorem,

Eq. (2.59) becomes ∫

Ω
[T ]

∂W

∂t
dΩ +

∮

∂Ω
Fi~ei · d~S =

∫

Ω
SdΩ, (2.64)

where [T ] = ∂U

∂W
is the time derivative Jacobian matrix listed in Appendix A, ∂Ω is the

bounding surface of the control volume Ω, ~ei is the unit vector in the ith direction and ~S is

the surface area vector which points in the surface normal direction.

In the rest of this thesis, the overheads denoting the filtered variables such as (·), (̃·), (̂·) will

be dropped for simplicity. However, their meanings should not be confused with the original

unfiltered variables.

2.4.2 Finite Volume Method and Integral Approximation

The above integral form of the governing equations will be discretized and solved in a

finite volume framework that has the advantage that it can be easily implemented in complex

geometries. The solution domain is divided into rectangular control volumes. The conserved

equations and conservation principles are applied to each control volume. The Cartesian

hexahedral control volumes are used in the present thesis and a typical control volume with

its six neighboring volumes is depicted in Fig. 2.1. Note that the solution variables are stored

at the geometric centers of the control volumes. And we will always align the coordinates
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(i, j, k)(i−1, j, k) (i+1, j, k)

(i, j+1, k)

(i, j, k−1)

(i, j−1, k)

(i, j, k+1)

(β=2)

(β=4)

(β=
3)

(β=
1)

(β=5)

(β=6)

South

Up

West East

Down
North

y, j

x, i

z, k

Figure 2.1 Main control volume (i,j,k) with its six neighboring control vol-

umes

with the directions as shown in Fig. 2.1. The indices 1, 2 and 3 in the above equations are

also always assigned to the x, y and z coordinates as well as u, v and w velocity components,

respectively. Every control volume has six surfaces that are labeled by numbers from one to

six denoting the east, north, west, south, up and down surfaces correspondingly.

The volume integrals in Eq. (2.64) are then approximated using the mean value theorm as

∫

Ω
[T ]

∂W

∂t
dΩ ≈

(
[T ]

∂W

∂t

)

i,j,k

Ωi,j,k;

∫

Ω
SdΩ ≈ Si,j,kΩi,j,k. (2.65)

This suggests that the solution variables stored at the volume center are assumed to be the

average values for the control volume and this indeed agrees with the implication of the implicit

grid filtering process described in section 2.2.

The surface integral is approximated as

∮

∂Ω
Fl~el · d~S ≈ C(W), (2.66)
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where

C(W) =
6∑

β=1

FlβnβlSβ . (2.67)

In the above equation the summation convention does not hold for index β which denotes the

six surfaces of the control volume. Flβ is the value of Fl on the βth surface of the control

volume; nβl is the projection of the unit outward normal ~nβ of the βth surface ~Sβ in the l

direction; The surface area vector ~Sβ = Sβ~nβ, where Sβ is the magnitude.

The inviscid flux vector on a surface between two control volumes, say the east/west (E/W)

surface between (i, j, k) and (i + 1, j, k), is evaluated as

Fl1 = Fl

(
Wi+1/2,j,k

)
, (2.68)

where Wi+1/2,j,k is the value of solution variables on the E/W surface which can be obtained

by Eq. (2.73). To compute the viscous and subgrid-scale fluxes, the gradients of W at the

control volume surfaces have to be calculated. The method will be given shortly.

With these approximations, Eq. (2.64) becomes

[T ]
dW

dt
Ω + C(W) = SΩ, (2.69)

which is an algebraic equation and every function in it depends solely on W of the main control

volume and its six neighboring volumes.

2.4.3 Gradients

To calculate the viscous and subgrid-scale flux vectors, the gradients of u, v, w and T at

the control volume surfaces have to be computed. The face based approach is used in this

work and the gradients are calculated and stored on the faces of the control volumes.

The gradients of a scalar φ are calculated with the Gauss divergence theorem on an auxiliary

control volume Ω′ as ∫

Ω′

∇φdΩ′ =

∫

∂Ω′

φd~S′. (2.70)

And this equation can be approximated as

∇φΩ′ ≈
6∑

β′=1

(
φ~S′

)
β′

, (2.71)
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where β′ denotes the six surfaces of the auxiliary control volume.

The auxiliary control volume is constructed such that its faces coincide with the volume

centers of the two main control volumes whose interface stores the gradients. For example,

(i, j+1, k)(i, j, k)
E/W

 su
rfa

ce

(i+
1/2

, j,
 k)

Auxiliary control volume

Figure 2.2 Auxiliary control volume for calculation of gradients on

east/west (E/W) surfaces of main control volumes

the auxiliary control volume used to calculate the gradients on the east/west (E/W) faces of

the main control volume (i, j, k) and (i + 1, j, k) is shown in Fig. 2.2. Thus, the volume of the

auxiliary control volume is given by

Ω′ =
1

2
(Ωi,j,k + Ωi+1,j,k). (2.72)

Since we assume the gradient on the surface (i+1/2, j, k) should be the average value over the

auxiliary control volume, it can be easily found from Eq. (2.71) that

φi+1/2,j,k = αxφi,j,k + (1 − αx)φi+1,j,k, (2.73)

where

αx =
xi+1,j,k − xi+1/2,j,k

xi+1,j,k − xi,j,k
. (2.74)

And the x derivative of φ at the E/W surface is

(
∂φ

∂x

)

i+1/2,j,k

=
φi+1,j,k − φi,j,k

xi+1,j,k − xi,j,k
. (2.75)
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The determination of the derivatives in the y and z directions at the E/W surface is a little

more complex. According to Eq. (2.71), we have
(

∂φ

∂y

)

i+1/2,j,k

=
(φS)N − (φS)S

Ω′
, (2.76)

where subscripts N and S, respectively, denote the north and south surfaces of the auxiliary

control volume, or alternatively, surfaces (i + 1/2, j + 1/2, k) and (i + 1/2, j − 1/2, k). In the

same spirit of Eq. (2.73), the values of φ on the north and south surfaces of the main control

volumes can be obtained:

φi,j+1/2,k = α+
y φi,j,k + (1 − α+

y )φi,j+1,k;

φi+1,j+1/2,k = α+
y φi+1,j,k + (1 − α+

y )φi+1,j+1,k;

φi,j−1/2,k = α−
y φi,j−1,k + (1 − α−

y )φi,j,k;

φi+1,j−1/2,k = α−
y φi+1,j−1,k + (1 − α−

y )φi+1,j,k. (2.77)

where

α+
y =

yi,j+1,k − yi,j+1/2,k

yi,j+1,k − yi,j,k
;

α−
y =

yi,j,k − yi,j−1/2,k

yi,j,k − yi,j−1,k
. (2.78)

Since both φi,j+1/2,k and φi+1,j+1/2,k contribute to (φS)N in Eq. (2.76), the value of φ on the

north and south surfaces of the auxiliary control volume should be determined with an area

weighting

φi+1/2,j+1/2,k = (1 − αx)φi,j+1/2,k + αxφi+1,j+1/2,k;

φi+1/2,j−1/2,k = (1 − αx)φi,j−1/2,k + αxφi+1,j−1/2,k. (2.79)

The difference between the above equation and Eq. (2.73) should be recognized. With these

results, the derivative of φ in the y direction on the E/W surface is
(

∂φ

∂y

)

i+1/2,j,k

=
φi+1/2,j+1/2,k − φi+1/2,j−1/2,k

yi,j+1/2,k − yi,j−1/2,k
. (2.80)

In the same manner, the derivative of φ in z direction on the E/W surface can be obtained.

With the above formalae all flux terms on each control volume surface in Eq. (2.67) can be

determined.
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2.4.4 Time Derivative Preconditioning

Eq. (2.69) can be solved by common compressible solvers using time marching. A problem

related with the solving procedure is that the convergence speed of the compressible solvers

becomes very slow at low Mach numbers. This is due to the large differences in the magnitude

of system eigenvalues. Eq. (2.59) can be written as

[T ]
∂W

∂t
+ [A]

∂W

∂x
= S −

[
∂(F1 + F1)

∂x
+

∂F2

∂y
+

∂F3

∂z

]
, (2.81)

where

[A] =
∂F1

∂W
. (2.82)

The five eigenvalues of matrix [T ]−1[A] are (u + c, u − c, u, u, u) where u is the convective

speed and c is the local sound speed. As the Mach number tends to zero, the sound speed

goes to infinity and the system is singular. To compute flows at low Mach numbers, one could

adopt a fully incompressible scheme. On the other hand, we can modify the compressible

formulation so that it will work well for the low Mach number situations. This technique

is called “preconditioning” which has been investigated by many researchers such as Turkel

(1987), Feng and Merkle (1990), Choi and Merkle (1993), etc. In the current research, the

preconditioning method developed by Pletcher and Chen (1993) is used. This involves adding

a pseudo-time derivative to the governing equation Eq. (2.69):

[Γ]
∂W

∂τ
Ω + [T ]

dW

dt
Ω + C(W) = SΩ, (2.83)

in which [Γ] is the preconditioning matrix and τ is the pseudo time. [Γ] is obtained by mul-

tiplying the first column of [T ] by the gas constant, R, as shown in Appendix A. Now the

characteristic of the system is controled by the differences in the eigenvalues of matrix [Γ]−1[A],

which are much closer to each other than was the case for the original system. As a result, the

convergence is improved dramatically for the numerical scheme.

2.4.5 LU-SGS Scheme

Now we describe the numerical scheme used to solve Eq. (2.83), namely, the lower-upper

symmetric Gauss-Seidel (LU-SGS) scheme. This approach was originally developed by Yoon
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and Jameson (1987) for the Euler and Navier-Stokes equations without preconditioning. Later

on Rieger and Jameson (1988) extended it to solve three-dimensional cases. Dailey (1997)

applied the scheme to solve the preconditioned Navier-Stokes equations in a finite volume

framework. There are several features highlighting the LU-SGS scheme when it is used for a

preconditioned system like Eq. (2.83).

First, since a pseudo time step is introduced in Eq. (2.83), the solving process is a dual

time marching one. That is, iterating in pseudo time for each step in physical time. When the

pseudo time step iterations converge, the governing equations are regarded as being satisfied

at this specific physical time step and the program goes ahead to the next physical time step.

The whole process will stop when the desired physical time has been reached. This is why

the preconditioning can work: the iteration happens for pseudo time steps and the “real”

time derivative is only updated with the results of the latest pseudo time step. Thus, the

characteristic of the system is only controled by [Γ]−1[A].

Second, in practice the pseudo time step ∆τ is set to be so large that the pseudo time

derivative [Γ]∆W

∆τ is extremely small and is ignored without calculation, in fact. However, it

is still by every means a pseudo time marching method, only with a negligible pseudo time

derivative.

Third, as expected, an L-D-U decomposition is needed for the coefficient matrix to facilitate

the pseudo time iterations.

Beginning with Eq. (2.83), the flux term C(W) is split into two parts:

C(W) =
6∑

β=1

FlβnβlSβ −
6∑

β=1

(F − F )lβnβlSβ = E(W) − V(W), (2.84)

where E(W) is the inviscid flux term and V(W) includes the viscous and subgrid-scale flux

contributions. In the present research the inviscid flux is calculated at each pseudo time step

while the viscous and subgrid-scale fluxes are lagged as the values of the previous pseudo time

step.

The pseudo time derivative is discretized with a first-order Euler backward difference, and

the physical time derivative is discretized with a second-order three point backward difference,
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which gives

[Γ]
Wm+1 − Wm

∆τ
Ω + [T ]

3Wn+1 − 4Wn + Wn−1

2∆t
Ω + E(Wn+1) = SmΩ + V(Wm), (2.85)

where m denotes the pseudo time step and n the physical time step. As mentioned above,

the solution at physical time step n + 1 can be regarded as being obtained if the pseudo time

iterations converge. Thus, Wn+1 can be substituted by Wm+1 in the iterations. The inviscid

flux vector is linearized as

E(Wm+1) ≈ E(Wm) +
6∑

β=1

[
([A]βnβx + [B]βnβy + [C]βnβz)Sβ(Wm+1 − Wm)β

]
, (2.86)

where

[A] =
(

∂F1

∂W

)m
; [B] =

(
∂F2

∂W

)m
; [C] =

(
∂F3

∂W

)m
. (2.87)

These inviscid flux Jacobians [A], [B] and [C] are given in Appendix A. Consequently, Eq.

(2.85) can be written in a “delta”form as

Ω

∆τ
∆W+[Γ]−1[T ]

3Ω

2∆t
∆W+[Γ]−1

6∑

β=1

([A]βnβx+[B]βnβy +[C]βnβz)Sβ∆Wβ = −Rm, (2.88)

where

∆W = Wm+1 − Wm;

Rm = [Γ]−1Rm; (2.89)

Rm = SmΩ − C(Wm) − [T ]
3Wm − 4Wn + Wn−1

2∆t
Ω.

As mentioned before, the pseudo time step ∆τ is set to be very large so that the first term in

the left hand side can be ignored. With the arrangements of control volumes and coordinates

shown in Fig. 2.1, Eq. (2.88) can be simplified as

[Γ]−1[T ]
3Ω

2∆t
∆W + [Γ]−1[([A]∆WS)1 − ([A]∆WS)3

+([B]∆WS)2 − ([B]∆WS)4 + ([C]∆WS)5 − ([C]∆WS)6)] = −Rm. (2.90)

Equation (2.88) can also be used for non-Cartesian hexahedral volumes, for example, Xu

(2003).
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The Jacobian matrices can be modified as

[A] = [Γ][Ã]; [B] = [Γ][B̃]; [C] = [Γ][C̃]. (2.91)

The terms on the surfaces can be approximated as

([A]∆W)1 = ([Γ][Ã]∆W)1 ≈ ([Γ][Ã]+∆W)i,j,k + ([Γ][Ã]−∆W)i+1,j,k;

([A]∆W)3 = ([Γ][Ã]∆W)3 ≈ ([Γ][Ã]+∆W)i−1,j,k + ([Γ][Ã]−∆W)i,j,k;

([B]∆W)2 = ([Γ][B̃]∆W)2 ≈ ([Γ][B̃]+∆W)i,j,k + ([Γ][B̃]−∆W)i,j+1,k;

([B]∆W)4 = ([Γ][B̃]∆W)4 ≈ ([Γ][B̃]+∆W)i,j−1,k + ([Γ][B̃]−∆W)i,j,k; (2.92)

([C]∆W)5 = ([Γ][C̃]∆W)5 ≈ ([Γ][C̃]+∆W)i,j,k + ([Γ][C̃]−∆W)i,j,k+1;

([C]∆W)6 = ([Γ][C̃]∆W)6 ≈ ([Γ][C̃]+∆W)i,j,k−1 + ([Γ][C̃]−∆W)i,j,k,

where

[Ã]± =
1

2
([Ã] ±

∣∣∣λ[Ã]

∣∣∣ [I]);

[B̃]
±

=
1

2
([B̃] ±

∣∣∣λ[B̃]

∣∣∣ [I]); (2.93)

[C̃]
±

=
1

2
([C̃] ±

∣∣∣λ[C̃]

∣∣∣ [I]).

λ is the maximum eigenvalues of the corresponding flux Jacobian matrix and [I] is the identity

matrix. From the above equations, it is obvious that

[Γ][Ã]+ − [Γ][Ã]− =
∣∣∣λ[Ã]

∣∣∣ [Γ];

[Γ][B̃]
+ − [Γ][B̃]− =

∣∣∣λ[B̃]

∣∣∣ [Γ]; (2.94)

[Γ][C̃]
+ − [Γ][C̃]− =

∣∣∣λ[C̃]

∣∣∣ [Γ].

Equations (2.93), (2.94) are substituted into Eq. (2.90). The result is written as

([L] + [D] + [U ])∆W = −R, (2.95)

where

[L] = −[Γ]−1
i,j,k

[
([Γ][Ã]+)i−1,j,kS3 + ([Γ][B̃]+)i,j−1,kS4 + ([Γ][C̃]+)i,j,k−1S6

]
;
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[D] = ([Γ]−1[T ])i,j,k
3Ω

2∆t
+ [Γ]−1

i,j,k

[
([Γ][Ã]+)i,j,kS1 − ([Γ][Ã]−)i,j,kS3

+([Γ][B̃]+)i,j,kS2 − ([Γ][B̃]−)i,j,kS3 + ([Γ][C̃]+)i,j,kS5 − ([Γ][C̃]−)i,j,kS6

]
; (2.96)

[U ] = −[Γ]−1
i,j,k

[
([Γ][Ã]−)i+1,j,kS1 + ([Γ][B̃]−)i,j+1,kS2 + ([Γ][C̃]−)i,j,k+1S5

]
.

It can be observed that the matrix [L] only depends on the lower points while [U ] only depends

on the upper points. Note Eq. (2.95) is written in this way for brevity, in fact ∆W should be

incorporated into each term with appropriate values. For example,

[L]∆W = −[Γ]−1
i,j,k

[
([Γ][Ã]+∆W)i−1,j,kS3 + ([Γ][B̃]+∆W)i,j−1,kS4 + ([Γ][C̃]+∆W)i,j,k−1S6

]
.

(2.97)

The same understanding also holds for the following Eqs. (2.100) and (2.101).

Due to Eq. (2.95) and the fact that for Cartesian grids,

S1 = S3 = S13; S2 = S4 = S24; S5 = S6 = S56, (2.98)

we have

[D] = ([Γ]−1[T ])i,j,k
3Ω

2∆t
+

[
(
∣∣∣λ[Ã]

∣∣∣)i,j,kS13 + (
∣∣∣λ[B̃]

∣∣∣)i,j,kS24 + (
∣∣∣λ[C̃]

∣∣∣)i,j,kS56

]
[I]. (2.99)

Due to the nature of the preconditioning matrix we chose, the product [Γ]−1[T ] is a diagonal

matrix so the matrix [D] is also diagonal. To efficiently solve Eq. (2.95), it can be approximated

as

([L] + [D])[D]−1([D] + [U ])∆W = −R, (2.100)

and solved in three steps as follows:

Step 1 : let X = [D]−1([D] + [U ])∆W, then

([L] + [D])X = −R.

Thus, X = [D]−1(−R− [L]X);

Step 2 : since [D]−1([D] + [U ])∆W = X, we have (2.101)

∆W = X − [D]−1[U ]∆W;

Step 3 : Wm+1 = Wm + ∆W.
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In step 1, the calculation is carried out on i + j + k = constant planes from the lower corner,

(i, j, k) = (1, 1, 1), to the upper corner, (i, j, k) = (ni, nj, nk), of the grid, where ni, nj, nk

are the number of control volumes in the x, y, and z directions, respectively. Through this

manner, [L]X are always known during the process and this is why it can be put on the right

hand side of the equation. Similarly, [U ]∆W is also always known during the sweeping from

upper corner to lower corner in step 2 and moved to the right hand side. Since [D] is diagonal,

the inversion of [D] in the above steps requires only a trivial amount of work and this is one

reason that the LU-SGS scheme is so efficient compared to other implicit schemes. For the

LU-SGS scheme, boundary conditions are handled by setting ∆W = 0 at ghost volumes and

explicitly setting W at the beginning of each iteration. More details are given in the following

section.

2.5 Boundary Conditions

Boundary conditions are enforced by using “ghost” volumes, as depicted in Fig. 2.3. The

ghost volumes are images of the corresponding near boundary control volumes, that is, they

are symmetrically located with respect to the boundary. According to Eq. (2.73), we have

φb =
1

2
(φnb + φg), (2.102)

where φb is the value of variable φ at the boundary, φnb the value at the near boundary control

volume and φg the value at the ghost volume. Since φnb is updated in each iteration, φg can be

set up at the beginning of the next iteration according to φnb so that a certain boundary value

φb can be enforced. Sometimes it is the normal derivative which is enforced at the boundary.

In such cases, Eq. (2.75) should be used to determine the ghost volume values:

φg = φnb +

(
∂φ

∂n

)

b

∆l, (2.103)

where ∆l is the distance between the volume centers.

Some most commonly used boundary conditions in DNS and LES are described here as

examples.
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( nb )

( g )

Near boundary

control volume

Ghost volume

Boundary

Figure 2.3 Ghost volumes for boundary conditions

2.5.1 Solid Wall Boundary Conditions

On solid walls, the no slip condition has to be enforced for all velocity components as

ug = −unb; vg = −vnb; wg = −wnb. (2.104)

The pressure condition at a solid wall is set as pg = pnb to fulfill the approximate boundary

condition ∂p/∂n = 0.

For cases involving heat transfer, two different temperature conditions can be applied at a

solid wall: fixed wall temperature or fixed wall heat flux. A desired wall temperature, Tw, is

enforced by setting Tg = 2Tw − Tnb. To enforce a fixed non-dimensional wall heat flux, qw, at

the wall, the temperature at the ghost volume is given by

Tg = Tnb +
qwRePr

µw
∆l. (2.105)

Note here the definition of qw is different from that of Eq. (2.10). The non-dimensional wall

heat flux qw is given in terms of the dimensional quantities as

qw =
q∗w

ρrefUrefTrefc∗p
. (2.106)

2.5.2 Periodic Boundary Conditions

Periodic boundary conditions have been extensively used in DNS and LES of incompressible

or constant property flows. This condition is especially suitable for fully developed homoge-

neous flow since the flow fields at inflow and outflow are considered as statistically the same

provided they are apart from each other far enough. A simple example is the fully developed
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flow in an uniform isothermal pipe. For periodic boundary conditions, the computational do-

main can be thought of as repeating itself infinitely. With the method of ghost volumes, this

can be done by copying values of the variables of the near outflow/inflow boundary control

volume to the ghost volume at the inflow/outflow boundary. This idea is shown in Fig. 2.4

( 0, j, k ) ( 1, j, k ) ( 2, j, k ) ( ni+1, j, k )( ni−1, j, k ) ( ni, j, k )

( ni, j, k ) ( 1, j, k )

.......

.......

( ni−1, j, k ) ( 2, j, k )

.......

Outflow boundary

Homogeneous direction

Inflow boundary
Computational domain

Figure 2.4 Periodic boundary conditions

in which the flow direction is the x direction. And the periodicity suggests that at inflow

(ρu)g = (ρu)0,j,k = (ρu)ni,j,k;

vg = v0,j,k = vni,j,k; (2.107)

wg = w0,j,k = wni,j,k;

Tg = T0,j,k = Tni,j,k.

However, the pressure is not periodic in the flow direction due to the negative, linear streamwise

pressure gradient which drives the flow. A common practice is to decompose the pressure into

pressure gradient term and periodic pressure term as

p(x, y, z, t) = βx + pp(x, y, z, t), (2.108)

where β is the streamwise pressure gradient. Since the pressure gradient term is much smaller

than the periodic pressure term for moderate Reynolds numbers, the pressure p may be replaced

with pp in the governing equations and at the same time the pressure gradient enters the

right hand side of the u-momentum equation as a “forcing function”. This forcing function

is determined by requiring that the mean mass flow rate reach a desired constant
(

ṁ
Ac

)0
.

Following the approach of Benocci and Pinelli (1990), β is calculated dynamically at each



www.manaraa.com

39

physical time step as

βn+1 = βn − 1

∆t

[(
ṁ

Ac

)0

− 2

(
ṁ

Ac

)n

+

(
ṁ

Ac

)n−1
]

, (2.109)

where Ac is the cross-flow area.

Though widely used and proven robust, the periodic boundary conditions have some obvious

shortcomings. First, it cannot be used for the developing flows; second, it should not be used

in the heat transfer cases with property variations, including density variations, since the

periodicity assumptions are no longer valid for pressure, temperature, and velocity; third, it

can hardly be applied to non-uniform geometries, for example, the flow past a backward facing

step; four, it cannot be used if the flow is intrinsically non-homogeneous, for example, free shear

or jet flows. The second problem can be cleared up by the step-periodic boundary conditions

which will be mentioned below. However, different strategies should be tried before the other

problems can be solved. This issue will be discussed in the next chapter.

2.5.3 Step-periodic Boundary Conditions

For cases with property variations due to the heat addition or even pressure changes when

an ideal gas equation of state is used to determine the density, the temperature and properties

change continually. As a result, the velocity and temperature are no longer periodic. Dailey

(1997) had found that the following conditions held approximately in the downstream region

(x > 5) of a two-dimensional, constant heat flux channel:

(ρu)(0, y) = (ρu)(Lx, y);

v(0, y) = v(Lx, y);

w(0, y) = w(Lx, y); (2.110)

pp(0, y) = pp(Lx, y);

T (0, y) = T (Lx, y) − ∆Tx,

where Lx is the length of the channel in the streamwise direction and the temperature difference

∆Tx is given by integrating the energy equation.
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CHAPTER 3. INCORPORATION OF NSCBC INTO LU-SGS SCHEME

3.1 Introduction

A large number of direct and large eddy simulations have used periodic boundary conditions

in one or more directions. With the assumption of periodicity, the computational domain is

thought of as being repeated infinitely. This condition can be easily applied and has been

proven robust. However, the periodicity assumption cannot be justified in a wide range of

situations. As indicated in the last chapter, such situations include the developing flows, heat

transfer cases with property variations, non-uniform geometries, free shear or jet flows and

more. It is also very common in flow simulations that only a limited computational domain

is considered due to the computer resource limit. This means that one has to “cut off” the

domain which is not of primary interest. In such cases artificial computational boundaries are

introduced where the domain is truncated and artificial boundary conditions (ABC) should be

applied there. Abundant amounts of literature have dealt with this subject for more than 20

years. It has been shown that a good ABC should lead to a well-posed mathematical problem.

To explore this aspect in detail is beyond the scope of this thesis, and the interested reader is

referred to reviews by Givoli (1991), Tsynkov (1998), Hagstrom (1999) and Colonius (2004).

A noteworthy comment is that a well-posed ABC does not always give satisfactory numerical

results. For instance, Oliger and Sundstrom (1978) proved that imposing the pressure on a

subsonic compressible outflow was a well-posed problem. However, it is well known that such

a crude boundary condition gives rise to strong reflections in the flow which can cause the

numerical solution to oscillate or even blow up (Anderson, 1995).

Another way to define ABC is the concept of non-reflecting boundary conditions (NRBC)

which inhibit the reflection of disturbances on the boundary. As just mentioned, many mathe-
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matically sound boundary conditions are not numerically feasible for reasons of wave reflections

which cause the solution to oscillate or even blow up. The physics behind this numerical phe-

nomenon is that, the mathematically sound boundary conditions, fixed pressure at a subsonic

compressible outflow for example, are usually only good for the steady-state. In an unsteady

flow, finite compression and expansion waves travel up and down the stream. As a result,

all the flow variables, including pressure, fluctuate with time. Thus, though totally proper

as the flow approaches the steady-state, the boundary condition may be physically improper

during the unsteady process. Since numerical simulations are essentially initial-boundary value

problems, which means the satisfactory final solution can only be reached by improving from

somewhat unsatisfactory initial guess, all numerical simulations are “unsteady” processes in

this view and proper time-accurate boundary conditions are needed so that the final solution

can be reached smoothly. In simulations of turbulent flows, this need is more imperative be-

cause turbulence is intrinsically irregular and fluctuating. Without boundary conditions that

can fluctuate appropriately with time, the numerical simulation of turbulence can hardly reflect

the real physics, let alone giving reasonable results.

One way to obtain such boundary conditions follows from the classical method of char-

acteristics solution (Hedstrom, 1979). It is based on the fact that a hyperbolic system can

be decomposed into wave modes propagating along the characteristic directions, which can be

going into or out of the computational domain. The outgoing waves are completely determined

by the interior solution and no boundary condition can be applied to them. It is waves entering

the domain from outside its boundary, together with the state in the interior, that determines

the time evolution of the system. For the case of one-dimensional flow, it is possible to locally

identify and decouple the outgoing and incoming waves. Then, we can enforce the boundary

condition we wish on the incoming waves. Boundary conditions obtained this way are named

characteristic boundary conditions (CBC).

Since the waves reflected back from the boundary will cause numerical problems, it is

attractive to cancel all waves entering the computational domain. Early work of Hedstrom

(1979) and Thompson (1987) use this principle. However, this non-reflecting boundary con-
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dition may violate the physics. For instance, there should exist one incoming wave that enters

the computational domain through a subsonic outflow boundary and should not be suppressed.

From this consideration, Rudy and Strikwerda (1980) improved this method to find a partially

non-reflecting boundary condition. They gave a way to specify the static pressure through the

outflow boundary of a subsonic flow. This method was adopted in Poinsot and Lele (1992). A

notable physical explanation and improvement of this method has been made by Liu (2006).

Finally, Thompson (1990) derived a force-free boundary condition, which sets to zero the sum

of all forces acting on the fluid in the direction normal to the boundary, so that a fluid element

at the boundary is simply advected outward at the fluid velocity.

The method initiated by Thompson (1987, 1990), which will be called Navier-Stokes char-

acteristic boundary condition (NSCBC), was further developed by Poinsot and Lele (1992).

Both of these authors based their method on the local one-dimensional inviscid (LODI) as-

sumption, which presumes the one-dimensional characteristic analysis can be performed in

multidimensional cases by ignoring the transverse and viscous terms. Of course, this assump-

tion is not exact and becomes a defect of the method for the lack of true multidimensionality.

Kim and Lee (2000, 2004) overcame this problem by treating the transverse and viscous terms

as source terms in the characteristic analysis.

Besides the NSCBC method, other numerical boundary conditions have been proposed.

These proposals include the perfectly matched layer (Berenger, 1994; Hu, 1996), the fringe

method (Spalart, 1988), the spatial windowing method (Guo et al., 1994), the super-grid-scale

model (Colonius and Ran, 2002), etc.

This chapter will be devoted to showing how the NSCBC method can be incorporated into

the LU-SGS scheme. Through a literature search it appears that the application of NSCBC

in LES and DNS is still not widespread. Some limited examples are Ravikanth and Pletcher

(2002) and Yahyaoui et al. (2001). The reason is that NSCBC has to be incorporated

into the original numerical scheme rather than being used separately (Anderson, 1995). The

LES and DNS codes tend to use very sophisticated numerical algorithms which makes such

incorporations somewhat complex and tricky. Hopefully the current presentation will help in
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some measure.

3.2 Navier-Stokes Characteristic Boundary Conditions

3.2.1 Transformation to Characteristic Form

The starting point of analysis for the development of boundary conditions is Eq. (2.81).

[T ]
∂W

∂t
+ [A]

∂W

∂x
= S −

[
∂(F1 + F1)

∂x
+

∂F2

∂y
+

∂F3

∂z

]
= S∗. (3.1)

Recall that [T ] is the transformation matrix between the conservative and the primitive vari-

ables. [A] is the inviscid flux Jacobian which is [A] = ∂F1

∂W
and Fi are the flux vectors. Notice

that the highlighting of the x direction in the above governing equation serves only as an ex-

ample. The choice depends on which direction of wave propagation is of interest. For example,

if one wants to impose NSCBC at the outlet of a duct as shown in Fig. 3.1, the equation

should be recast in the x direction. If instead one hopes to apply NSCBC to the solid wall,

L

L1

4L

( u )
( u )

2L

3L

( u − c )

5

flow

( u )

( u + c )

( u − c )

y, v

z, w

x, u
L ( u )

( u + c )

5L

L1

4L

( u )
( u )

2L

3

Figure 3.1 Sketch of a square duct for the characteristic analysis

then it is the y and/or z directions which should be modified.

By multiplying by [T ]−1 the above equation becomes

∂W

∂t
+ [Π]

∂W

∂x
= [T ]−1S∗, (3.2)

where [Π] = [T ]−1[A]. Let [Π] = [S][Λ][S]−1, where [Λ] is a diagonal matrix with elements

that are eigenvalues of [T ]−1[A], then the rows of [S]−1 are the corresponding eigenvectors.
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Multiplying Eq. (3.2) by [S]−1, we have

[S]−1 ∂W

∂t
+ [Λ][S]−1 ∂W

∂x
= [S]−1[T ]−1S∗. (3.3)

We define

[Ξ] = [Λ][S]−1, (3.4)

and

L = [Ξ]
∂W

∂x
(3.5)

which is the characteristic wave vector. It bears this name because the components of Eq. 3.3

are of the form of a wave equation:

l i

(
∂W

∂t
+ λi

∂W

∂x

)
= li([T ]−1S∗), (3.6)

where li are rows of [S]−1, that is, the left eigenvectors; λi are the corresponding eigenvalues.

It can be observed that in fact L is another expression for the convection terms, and each

component of L is either an incoming or an outgoing wave, depending on the sign of its

eigenvalue. For an ideal gas, the five eigenvalues are (u + c, u − c, u, u, u) where c is the local

sound speed. In a subsonic flow, |u| < c, then there should exist at least one incoming wave at

the outlet and typically four incoming waves at the inlet, as shown in Fig. 3.1. The outgoing

waves can be directly computed from Eq. (3.5) with a one-sided difference that uses grid points

on the interior side of the boundary. Though the accuracy of the spatial derivatives is often

decreased (centered differences are replaced by one-sided differences in our case), theoretical

analysis (Gustafsson, 1975) shows that if the order of approximation near the boundary is equal

to the scheme order minus one, the overall accuracy of the scheme is not affected. However,

the incoming waves cannot be evaluated this way. This can be explained in terms of numerical

evaluation of spatial derivatives. Most numerical schemes are stable for upwind differencing and

unstable for downwind differencing. Thus, estimating the incoming waves with one one-sided

difference requires downwind differencing and should be avoided. In fact, all incoming waves

at a given boundary should be obtained from the choice of the physical boundary conditions

imposed on this boundary and the outgoing waves. This process can by symbolically expressed
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as

Li = f(Wp,Lo), (3.7)

where subscripts i, o, p denote incoming waves, outgoing waves and physical boundary condi-

tions, respectively. Usually we need to use the following equation, which can be easily obtained

from Eq. (3.3), to deduce the relation between different Lis, especially when physical boundary

conditions are involved.

∂W

∂t
+ D = [T ]−1S∗, (3.8)

where D = [S]L.

As a result of the above process, a new matrix [Ξ′] can be obtained by replacing some rows

of the original matrix [Ξ] with the linear combinations of the other rows. New terms may also

be introduced into the source term of the equation. Correspondingly, Eq. (3.3) becomes

[S]−1 ∂W

∂t
+ [Ξ′]

˚∂W

∂x
= [S]−1[T ]−1S̊∗′. (3.9)

Here the accent (̊·) means the x derivatives have to be evaluated with one-sided differences

and the prime added to the source term means some new terms may be introduced.

After the boundary conditions are applied to the incoming waves, the equation can be

transformed to the familiar form like Eq. (3.1) by multiplying Eq. (3.9) with [T ][S]:

[T ]
∂W

∂t
+ [A′]

˚∂W

∂x
= S̊∗′, (3.10)

where [A′] = [T ][S][Ξ′] and this equation should be applied to the considered boundary.

3.2.2 Local One-Dimensional Inviscid Assumption

The matrices involved in the procedure described in the last section are listed in Appendix

B. Notice they are only valid for the present governing equations, which are for an ideal gas

and a gas constant R has been multiplied throughout. With the results shown in Appendix B,
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we have

L =




L1

L2

L3

L4

L5




=




(u + c) (γ−1)T
2 ( 1

γp
∂p
∂x + 1

c
∂u
∂x)

(u − c) (γ−1)T
2 ( 1

γp
∂p
∂x + 1

c
∂u
∂x)

u
[

∂T
∂x − (γ−1)T

γp
∂p
∂x

]

u ∂v
∂x

u∂w
∂x




; D =




D1

D2

D3

D4

D5




=




p
T

γ
γ−1(L1 + L2)

c
(γ−1)T (L1 − L2)

L4

L5

L1 + L2 + L3




.

(3.11)

And by virtue of Eq. (3.8), D is related to the time derivatives of the primitive variables which

can be subject to physical boundary conditions. One major simplification is reached by using

the so-called local one-dimensional inviscid (LODI) assumption, which argues that the source

term on the right hand side of Eq. (3.8) can be ignored for the current purpose. In terms of

the primitive variables we chose, this LODI system is

∂p

∂t
+

p

T

γ

γ − 1
(L1 + L2) = 0; (3.12)

∂u

∂t
+

c

(γ − 1)T
(L1 − L2) = 0; (3.13)

∂v

∂t
+ L4 = 0; (3.14)

∂w

∂t
+ L5 = 0; (3.15)

∂T

∂t
+ L1 + L2 + L3 = 0. (3.16)

Most physical boundary conditions have a counterpart LODI relation. For example, imposing

a constant inlet pressure should be accomplished (from Eq. (3.12)) by setting L2 = −L1 to fix

the amplitude variation of the pressure wave entering the domain.

The previous relations may be combined to express the time derivatives of other quantities

of interest. For instance

∂ρ

∂t
+

ρ

T

[
1

γ − 1
(L1 + L2) − L3

]
= 0; (3.17)

∂(ṁ/Ac)

∂t
+

ρc

T

{
1

γ − 1
[(1 + M)L1 − (1 −M)L2] −ML3

}
= 0, (3.18)

where ṁ
Ac

= ρu is the local mass flow rate and M = u/c is the local Mach number.
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Table 3.1 Number of physical boundary conditions needed for

well-posedness of 3-D Euler and Navier-Stokes equations

Boundary Conditions Euler Navier-Stokes

Subsonic inflow 4 4/5

Subsonic outflow 1 4

no-slip wall - 4

Other forms of LODI relations may be useful when boundary conditions are imposed in

terms of gradients. All gradients normal to the boundary may be expressed as functions of the

Lis:

∂p

∂x
=

pγ

T (γ − 1)

[ L1

u + c
+

L2

u − c

]
; (3.19)

∂u

∂x
=

c

T (γ − 1)

[ L1

u + c
− L2

u − c

]
; (3.20)

∂T

∂x
=

L1

u + c
+

L2

u − c
+

L3

u
. (3.21)

3.2.3 NSCBC Strategy for Euler and Navier-Stokes Equations

In this section we simply copy two tables (Table 3.2, 3.3) from Poinsot and Lele (1992),

which list several choices of physical boundary conditions for the 3-D Euler and Navier-Stokes

equations. From theoretical studies (Strikwerda, 1977; Oliger and Sundström, 1978), we know

a certain number of physical boundary conditions are needed for the well-posedness of these

two types of equations. The results are shown in Table 3.1.

We will discuss how the above general theory can be fit to special physical boundary

conditions in the subsequent sections.

3.2.4 Subsonic Inflow Boundary Conditions

At a subsonic inflow boundary, four characteristic waves, L1, L3, L4, L5 are entering the

domain while L2 is leaving the domain. Four physical boundary conditions are needed and

many different choices exist. For example, we can impose u, v, w and T which is typical when

we wish to control the inlet shear. Note these quantities are not necessarily constants but can
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Table 3.2 Physical inflow boundary conditions for 3-D flows for Euler and

Navier-Stokes equations

Euler Navier-Stokes

Inviscid Number of Inviscid Viscous Total number

conditions conditions conditions conditions of conditions

4 0 4

SI 1 u1 imposed u1 imposed Special case:

No well-posed- u2 imposed u2 imposed Euler and NS

ness proof for u3 imposed 4 u3 imposed need same

Euler or NS T imposed T imposed conditions

4 1 5

SI 2 u1 imposed u1 imposed

Well-posed u2 imposed u2 imposed

for Euler. No u3 imposed 4 u3 imposed ∂τ11
∂x1

= 0

proof for NS ρ imposed ρ imposed

4 1 5

SI 3 u1 − 2c/(γ − 1) u1 − 2c/(γ − 1)

imposed imposed

Well-posed u2 imposed u2 imposed Did not

for Euler u3 imposed 4 u3 imposed ∂τ11
∂x1

= 0 work

and NS s imposed s imposed (Unstable)

4 1 5

SI 4 L1 = 0 L1 = 0

Non-reflecting L3 = 0 L3 = 0

No proof for L4 = 0 4 L4 = 0 ∂τ11
∂x1

= 0

Euler and NS L5 = 0 L5 = 0
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Table 3.3 Physical outflow/wall boundary conditions for 3-D flows for Eu-

ler and Navier-Stokes equations

Euler Navier-Stokes

Inviscid Number of Inviscid Viscous Total number

conditions conditions conditions conditions of conditions

1 3 4

SO 1 ∂τ12
∂x1

= 0

Subsonic p at infinity p at infinity ∂τ13
∂x1

= 0

non-reflecting is imposed 1 is imposed ∂q1

∂x1
= 0

outflow

1 3 4

SO 2 ∂τ12
∂x1

= 0

Subsonic p p ∂τ13
∂x1

= 0

reflecting is imposed 1 is imposed ∂q1

∂x1
= 0

outflow

4 0 4

W 1 u1 = 0

u2 = 0

Isothermal u3 = 0

no-slip T = cte

wall

3 1 4

W 2 u1 = 0

u2 = 0 q1 = 0

Adiabatic u3 = 0

no-slip

wall

1 3 4

W 3

τ12 = 0

Adiabatic u1 = 0 1 u1 = 0 τ13 = 0

slip wall q1 = 0
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be changing with time. This is common in simulations of turbulence where flow fluctuations

should be introduced. Since L2 is an outgoing wave, it can be calculated by interior points and

one-sided differences. The other four unkown incoming waves then are computed from Eqs.

(3.13) to (3.16) in terms of L2 and time derivatives of u, v, w and T , which are known.

3.2.5 Subsonic Outflow Boundary Conditions

For subsonic flow at exit, there is only one incoming wave, namely L2, which needs special

treatment. The conventional method to provide a well-posed problem is to enforce p = p∞ at

the outflow boundary. This treatment will however create acoustic wave reflections which may

contaminate the flow solutions. On the other hand, a perfect non-reflecting boundary condition

imposed by setting L2 = 0 is also problematic because there is nothing to prevent the pressure

from drifting. A clever solution to this dilemma is the partial-reflecting boundary condition

proposed by Rudy and Strikwerda (1980) who modified the LODI relation for pressure, Eq.

(3.12), a little

∂p

∂t
+

p

T

γ

γ − 1
(L1 + L2) + α(p − p∞) = 0, (3.22)

where α is an adjustable parameter. From this equation we can find

L2 = K(p − p∞) − L1, (3.23)

where K is determined by K = σ(1−M2)c/L. The preferred range for constant σ is 0.2− 0.5.

L is the characteristic length of the domain and M is the maximum Mach number in the flow

field. A notable physical explanation and improvement of this formula has been made by Liu

(2006).

3.2.6 Adiabatic and Isothermal Wall Boundary Conditions

From Table 3.3, it can be seen at an adiabatic wall, all velocity components should vanish

and the heat flux is zero. LODI relations (3.13), (3.14), and (3.15) show that L2 = L1 and

L4 = L5 = 0. L3 also is zero because the normal velocity is zero.

For an isothermal wall, it is of interest to observe that L2 should be equal to L1 according to

Eq. (3.13), however, from Eq. (3.16), L2 should be equal to −L1! This obvious contradiction
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is due to the improper LODI assumption in this situation: the source term Rq (see Eq. (2.63))

is typically large and cannot be ignored.

3.2.7 Beyond LODI

The local one-dimensional inviscid assumption is in fact a drawback of NSCBC method.

The reason is that without considering the source term in Eq. (3.8), the resultant characteristic

equations on the boundary are not accurate and may not be able to converge to the exact

solution. This will be illustrated in the next section. It is therefore preferred to include the

source term in Eq. (3.8) when the relations between ∂W

∂t and D are deduced.

3.2.8 Case Study: Purely Subsonic Isentropic Nozzle Flow

Now we use a simple quasi-one-dimensional flow, namely the purely subsonic isentropic

nozzle flow, to show how the above procedure can be implemented. This example is taken

from the textbook Computational fluid dynamics: the basics with applications of Anderson

(1995) which gives more details. The price for using this relatively simple example is that

some equations should be deduced again.

e
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Figure 3.2 Sketch of a convergent-divergent nozzle for the purely subsonic

flow solution

The convergent-divergent nozzle sketched in Fig. 3.2 has a specified area distribution as
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follows

A

At
=





1 + 2.2( x
L − 1.5)2, 0 ≤ x

L ≤ 1.5

1 + 0.2223( x
L − 1.5)2, 1.5 ≤ x

L ≤ 3.0
(3.24)

where At denotes the area of the nozzle throat and L is some reference length. The pressure

ratio is pe

p0
= 0.9. According to the exact analytical solution, the flow through the nozzle is

still subsonic everywhere; the highest Mach number, which occurs at the throat, is 0.721 and

the Mach number at the exit is 0.391.

The nondimensional governing equations are

∂U

∂t
+ [A]

∂U

∂x
= J, (3.25)

where

U =




ρ

V

T




; [A] =




V ρ 0

T
γρ V 1

γ

0 (γ − 1)T V




; J =




−ρV ∂ln A
∂x

0

−(γ − 1)TV ∂ln A
∂x




. (3.26)

The nondimensional variables are defined as

T = T ∗

T0
, ρ = ρ∗

ρ0
, p = p∗

p0
, A = A

At
,

x = x∗

L , V = V ∗

c0
, t = t∗

L/c0
, c0 =

√
γRT0.

(3.27)

The above equations can be solved by using a finite-difference method with the MacCor-

mack scheme. First the x axis along the nozzle is divided into N grid points with uniform

spacing ∆x. The first point, labeled point 1, is at the nozzle inlet and the last point which is

at the nozzle exit is denoted by N . We choose N = 31. Suppose point i is an arbitrary grid

point, with points i − 1 and i + 1 as the adjacent points.

The MacCormack scheme is a predictor-corrector method. We will briefly show the steps.

First, consider the predictor step. We have

(
∂U

∂t

)t

i

= −[A]ti
Ut

i+1 − Ut
i

∆x
+ Jt

i. (3.28)

The predicted values of Ui is obtained from

Ūt+∆t
i = Ut

i +

(
∂U

∂t

)t

i

∆t. (3.29)
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The predicted values of the matrix [A] and the source term J can be obtained from Ū.

Moving to the corrector step, we have

(
∂U

∂t

)t+∆t

i

= − ¯[A]
t+∆t
i

Ūt+∆t
i − Ūt+∆t

i−1

∆x
+ J̄t+∆t

i . (3.30)

Therefore, the average time derivative of U is

(
∂U

∂t

)

av

= 0.5

[(
∂U

∂t

)t

i

+

(
∂U

∂t

)t+∆t

i

]
, (3.31)

and the variables at time t + ∆t are evaluated by

Ut+∆t
i = Ut

i +

(
∂U

∂t

)

av

∆t. (3.32)

The inflow boundary conditions are fixed ρ and T , both equal to 1.0, while V is extrapolated

from the interior:

V1 = 2V2 − V3. (3.33)

At the outlet, the pressure is specified and the other two flow variables should be allowed to

float.

VN = 2VN−1 − VN−2; TN = 2TN−1 − TN−2; ρN = pN

TN
. (3.34)

The initial conditions are 



ρ = 1.0 − 0.023x;

T = 1.0 − 0.009333x;

V = 0.05 + 0.11x.

(3.35)

The distribution of pressure through the nozzle at three different time steps is shown in Fig.

3.3. We can see the numerical solution oscillates enormously at time step 1200. In fact shortly

thereafter the solution blows up. This is due to the wave reflection at the downstream boundary.

One way to fix this problem is by adding artificial viscosity to the governing equations so that

the reflecting waves may be dissipated. This is the method adopted by Anderson (1995). We

will try the NSCBC method instead.

Starting from the governing equations (3.25) and (3.26), we have

[A] = [S][Λ][S]−1, (3.36)
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Figure 3.3 Pressure distribution through purely subsonic nozzle at different

time steps

where

[S] =




1
2γc − 1

γT
1

2γc

− 1
2γρ 0 1

2γρ

(γ−1)c
2γρ

1
γρ

(γ−1)c
2γρ




, (3.37)

and

[S]−1 =




c −γρ ρ/c

(1 − γ)T 0 ρ

c γρ ρ/c




; [Λ] =




V − c 0 0

0 V 0

0 0 V + c




. (3.38)

The three characteristic waves are

L =




L1

L2

L3




=




(V − c)c −γρ(V − c) (V − c)ρ/c

(1 − γ)TV 0 ρV

(V + c)c γρ(V + c) (V + c)ρ/c




∂x




ρ

V

T




. (3.39)
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Then we have

D =




D1

D2

D3




=




1
2γc(L1 + L3) − 1

γT L2

1
2γρ(L3 − L1)

(γ−1)c
2γρ (L1 + L3) + 1

γρL2




. (3.40)

Thus, at the inlet and outlet boundaries we have

∂U

∂t
+ D = J, (3.41)

which is the appropriate equation for both boundaries.

At the inflow boundary there is one outgoing wave, namely L1, as well as two incoming

waves, L2 and L3, which need to be determined. The physical boundary conditions are fixed

density and temperature at the inlet. Therefore, from Eq. (3.40), we have

D1 = J1 = −ρV
∂ln A

∂x
;

D3 = J3 = −(γ − 1)TV
∂ln A

∂x
, (3.42)

at point i = 1, which gives

L3 = −L1 − 2γ
(
ρcV ∂ln A

∂x

)
i=1

; L2 = 0. (3.43)

Notice the LODI is not used and the source term is included in the formula. Substituting Eq.

(3.43) into Eqs. (3.40) and (3.41), we obtain the equation for the inflow boundary, i = 1.

At the outflow boundary there are two outgoing waves, namely L2, L3, and there is one

incoming wave, L1, which needs to be determined. The physical boundary conditions are fixed

pressure at the outlet. Therefore, from Eq. (3.40),we have

∂p

∂t
= T

∂ρ

∂t
+ ρ

∂T

∂t
= 0;

T (−D1 + J1) + ρ(−D3 + J3) = 0, (3.44)

(3.45)

at point i = N , which gives

L1 = −L3 − 2γ

(
ρcV

∂ln A

∂x

)

i=N

. (3.46)
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The above equation can be directly substituted into Eqs. (3.40) and (3.41) to obtain the

equation for the outflow boundary. The result is shown in Fig. 3.4. No spurious waves are

observed at the outflow boundary, and the steady-state solution matches the exact value very

well. It can be derived that at the outflow boundary

x/L

p
/p

0

0 1 2 3
0.6

0.7

0.8

0.9

1

Exact solution
400 steps
800 steps
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Figure 3.4 Pressure distribution through purely subsonic nozzle at different

time steps

−∂p

∂t
=

c

2
(L1 + L3) + γpV

∂ln A

∂x
. (3.47)

Thus, if Eq. (3.46) is used, we have ∂p
∂t = 0. However, if LODI is used, which gives L1 = −L3,

then the pressure variation at the outflow will be determined by the differential equation

∂p

∂t
= −γpV

∂ln A

∂x
, (3.48)

whose behavoir depends on the velocity, which is in turn dependent on pressure. This makes

the problem complex and difficult to control.

The last comment is made on the partial-reflecting outflow boundary condition mentioned

in section 3.2.5. When this boundary condition is used, along with the reasoning we have
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followed until now, we have

∂pN

∂t
= − c

2
K(pN − p∞), (3.49)

which gives

∆p = ∆p0e
− c

2
Kt, (3.50)

where ∆p = pN − p∞. It can be observed that K is in fact inverse of a length scale and should

be always positive.

3.3 Incorporation of NSCBC into LU-SGS Scheme

In the simulations of developing flows, either hydrodynamically or thermally or both, it is

preferred to use characteristic boundary conditions at the outflow to simple extrapolation. The

reason is that simple extrapolation of both velocities and pressure neither satisfies the physics

nor is able to maintain the correct friction velocity level inside the flow. Another choice is the

convective boundary condition which assumes the flow field advects out of the exit with the

speed of the mean flow. However, it still leaves the problem of setting up a proper outflow

pressure field for compressible flows.

We will use the partial-reflecting outflow boundary condition. The LODI relation is Eq.

(3.22):

∂p

∂t
+

p

T

γ

γ − 1
(L1 + L2) + α(p − p∞) = 0, (3.51)

therefore the incoming wave L2 can be expressed as

L2 = K(p − p∞) − L1. (3.52)

As a result, the matrix [Ξ] (see Eq. (3.4)) is changed to [Ξ′] in Eq. 3.9 at the outflow boundary.

In virtue of Eq. (B.5), we have

[Ξ′] =




(u + c)(γ − 1)T/(2γp) (u + c)(γ − 1)T/(2c) 0 0 0

−(u + c)(γ − 1)T/(2γp) −(u + c)(γ − 1)T/(2c) 0 0 0

−u(γ − 1)T/(γp) 0 0 0 u

0 0 u 0 0

0 0 0 u 0




(3.53)
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and the Jacobian matrix [A′] in Eq. (3.10) is therefore

[A′] = [T ][S][Ξ′] =




u(γ−1)
γT 0 0 0 − pu

T 2

c(u+c)+u2(γ−1)
γT

p(u+c)
T 0 0 −pu2

T 2

uv(γ−1)
γT 0 pu

T 0 −puv
T 2

uw(γ−1)
γT 0 0 pu

T −puw
T 2

u
[
c(u+c)+ u2

+v2
+w2

2
(γ−1)

]

γT
pu(u+c)

T
puv
T

puw
T −pu(u2+v2+w2)

2T 2




. (3.54)

Also a new source term is introduced to the right member of Eq. (3.10):

S∗′ = S∗ − Sα, (3.55)

where

Sα = [T ][S]




0

K(p − p∞)

0

0

0




=




1

u − c

v

w

H − uc




· pK(p − p∞)

T 2(γ − 1)
. (3.56)

Now we turn our attention to the real application of the above modified system. At the

outlet, as sketched in Fig. 3.5, the modified system should be applied to the outflow surface,

(ni+1,j,k)(ni,j,k)(ni−1,j,k)(ni−2,j,k)

Ghost volume

(East)1S

3 (West)S

Outflow

x

Figure 3.5 Sketch of the outflow boundary
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which is the east face of control volume (ni, j, k). For the interior control volumes, the original

integral governing equations should be used for all six surfaces. For the near-boundary volume

(ni, j, k), however, only five faces of the hexahedron use the original equations since its east

surface is subject to the new system. Thus, Eq. 2.90 becomes

[Γ]−1[T ]
3Ω

2∆t
∆W + [Γ]−1[([A′]∆WS)1 − ([A]∆WS)3

+([B]∆WS)2 − ([B]∆WS)4 + ([C]∆WS)5 − ([C]∆WS)6)] = −Rm (3.57)

for the near-boundary volume (ni, j, k). As a result, the matrices in the L−D−U decomposition

become

[L] = −[Γ]−1
ni,j,k

[
([Γ][Ã]+)ni−1,j,kS3 + ([Γ][B̃]+)ni,j−1,kS4 + ([Γ][C̃]+)ni,j,k−1S6

]
;

[D] = ([Γ]−1[T ])ni,j,k
3Ω

2∆t
+ [Γ]−1

ni,j,k

[
([Γ][Ã′]+)ni,j,kS1 − ([Γ][Ã]−)ni,j,kS3

+([Γ][B̃]+)ni,j,kS2 − ([Γ][B̃]−)ni,j,kS3 + ([Γ][C̃]+)ni,j,kS5 − ([Γ][C̃]−)ni,j,kS6

]
; (3.58)

[U ] = −[Γ]−1
ni,j,k

[
([Γ][Ã′]−)ni+1,j,kS1 + ([Γ][B̃]−)ni,j+1,kS2 + ([Γ][C̃]−)ni,j,k+1S5

]
.

Compared with the original matrices, the lower matrix [L] does not change but both the

diagonal matrix [D] and the upper matrix [U ] do change. In the above equations,

[Ã′] = [Γ]−1[A′];

[Ã′]± =
1

2
([Ã′] ±

∣∣∣λ[Ã′]

∣∣∣ [I]). (3.59)

One problem is that now the diagonal matrix [D] is no longer diagonal:

[D] = ([Γ]−1[T ]) 3Ω
2∆t + ([Ã′]+ − [Ã]−)S13 + (

∣∣∣λ[B̃]

∣∣∣ [I])S24 + (
∣∣∣λ[C̃]

∣∣∣ [I])S56

= ([Γ]−1[T ]) 3Ω
2∆t

+1
2

[
([Ã′] − [Ã]) + (

∣∣∣λ[Ã′]

∣∣∣ +
∣∣∣λ[Ã]

∣∣∣)[I]
]
S13

+(
∣∣∣λ[B̃]

∣∣∣ [I])S24 + (
∣∣∣λ[C̃]

∣∣∣ [I])S56,

(3.60)
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and

[Ã′] − [Ã] = [Γ]−1([A′] − [A]) =




− u
R −γp

R 0 0 0

uc
γp c 0 0 0

0 0 0 0 0

0 0 0 0 0

uT (1−γ)
γp (1 − γ)T 0 0 0




, (3.61)

which contains four non-diagonal elements. Since the efficiency of LU-SGS scheme is largely

dependent on the easily-done inversion of the diagonal matrix [D], these newly arising non-

diagonal elements can totally ruin the scheme. Our treatment to solve this problem is pretty

simple: we move the non-diagonal elements of [D] to the corresponding locations of the lower

and upper matrices. That is

[L′] = [L] +




0 0 0 0 0

uc
γp 0 0 0 0

0 0 0 0 0

0 0 0 0 0

uT (1−γ)
γp (1 − γ)T 0 0 0




, (3.62)

and

[U ′] = [U ] +




0 −γp
R 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




. (3.63)
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In this way, matrix [D] becomes diagonal again:

[D′] = ([Γ]−1[T ]) 3Ω
2∆t

+(
∣∣∣λ[B̃]

∣∣∣ [I])S24 + (
∣∣∣λ[C̃]

∣∣∣ [I])S56,

+1
2S13




− u
R + λ̄A 0 0 0 0

0 c + λ̄A 0 0 0

0 0 λ̄A 0 0

0 0 0 λ̄A 0

0 0 0 0 λ̄A




,

(3.64)

where λ̄A =
∣∣∣λ[Ã′]

∣∣∣ +
∣∣∣λ[Ã]

∣∣∣. And the new iteration equation for the near-boundary volume

(ni, j, k) is

([L′] + [D′] + [U ′])∆W = −R′, (3.65)

in which the prime accent put on the source term denotes that an additional source term (see

Eq. (3.56)) is included.
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CHAPTER 4. TURBULENT DUCT FLOW WITH AND WITHOUT

HEAT TRANSFER

In this chapter, the LES formulation is applied to simulations of turbulent flow through

a stationary square duct. The isothermal flows will be calculated first, and then the results

of turbulent duct flows with low and high heating are presented. The DNS of Gavrilakis

(1992) and that of Huser and Biringen (1993), along with the experimental measurements of

Cheesewright et al. (1990) will be compared with the current LES results for the isothermal

flows. The heat transfer coefficient for duct flow under heating will be compared with empirical

relations.

4.1 Introduction

Turbulent heat transfer in a square duct has many engineering applications, for example,

in heat exchangers. Some experiments have been conducted to study the characteristics of

the flow and temperature fields in this class of flows. Sparrow et al. (1986) carried out

experiments of a hydrodynamically developed turbulent flow developing in a duct heated on

one side. They obtained the Nusselt number in fully developed as well as thermal entrance

regions. They also found that the one-wall heating condition resulted in relatively long thermal

entrance lengths. Hirota et al. (1997) made measurements for forced-convection heat transfer

in a four-isothermal-walled square duct. Their measurements showed the similarity between

distributions of streamwise turbulent heat flux and temperature fluctuation intensity. Similar-

ity was also found between distributions of the transverse turbulent heat flux and turbulent

shear stress. From their results, it was found that the constant turbulent Prandtl number

assumption was invalid for duct flow since it became larger as the duct corner was approached.
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Liou et al. (2000) visualized the local heat transfer distributions in a sharp turning duct using

the transient liquid crystal method.

A significant amount of numerical simulations (Launder and Ying, 1973; Myong, 1991;

Rokni and Gatski, 2001; Rokni and Sunden, 2003) based on the Reynolds-averaged Navier-

Stokes (RANS) equations have been conducted on this topic. Relatively few direct numerical

simulations (DNS) or large eddy simulations (LES) of turbulent heat transfer in a duct are

available. The only direct simulation appears to be the work of Piller and Nobile (2002),

which provided results on incompressible turbulent duct flow with an imposed temperature

difference between the horizontal walls. Their results indicated that secondary motions affect

the distributions of local shear stress and wall heat flux rather than global parameters such

as friction factor and Nusselt number. Pallares and Davidson (2002) did an LES study of

turbulent heat transfer in both stationary and rotating square ducts using an incompressible

formulation. The LES research of Vázquez and Métais (2002) on a one-wall-heated duct is the

only study which employed the compressible Navier-Stokes equations. They observed stronger

secondary flows as well as weaker turbulent fluctuations in the near-wall region in heated duct

compared with non-heated duct. These effects were found to be mostly due to the increase of

the viscous sublayer thickness and amplification of ejection events near the heated wall.

In strongly heated internal gas flows, the temperature variations result in significant varia-

tions in density, molecular viscosity and thermal conductivity. The flows develop continuously

downstream and the turbulence may undergo a reverse transition to a laminar-like state which

is sometimes referred to as laminarization. Perkins (1975) is the first to measure mean tem-

perature profiles for dominantly forced convection of gases in a vertical pipe with significant

property variations at low Mach numbers. Shehata and McEligot (1998) presented the first

mean velocity distributions for this situation. Satake et al. (2000) performed DNS for tur-

bulent gas flow in a vertical pipe with property variations. Xu et al. (2004) carried out LES

for the same situation. However, there are no LES or DNS results for turbulent flow in a duct

with high heating available. The present research tries to give some LES results for the high

heating case with an expectation to invite further experimental and numerical work on this
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topic.

In turbulent duct flows, Prandtl’s secondary flow of the second kind has a significant effect

on the transport of heat and momentum. This secondary flow causes distortion of the isolines

of mean velocity, temperature, and their fluctuations. Heating changes the structures of the

near wall turbulence which in turn changes the mean and fluctuation values as well as Reynolds

stress components. Different heating arrangements have different effects.

The present paper deals with the large eddy simulation of hydrodynamically developed

turbulent air flow thermally developing in a four-heated-wall square duct at low Mach number.

The magnitude of heating simulated can be high enough to cause significant property variations.

From a search of the literature it appears that no prior LES (or DNS) work of this class of

flows has been reported, mainly due to the non homogeneous nature of the flow. Due to the

large variation of properties, the widely used spatially periodic boundary condition does not

apply for this situation, although experiments of McEligot et al. (1965) show there exists

a “quasi-developed” state far downstream of the entry and the “stepwise” periodic boundary

conditions can be used in this region. This “stepwise” periodic boundary conditions have been

used in LES of turbulent heat transfer by Dailey et al. (2003) and Xu et al. (2004). In

the present study, we use the fully developed turbulent flow in an isothermal duct to generate

mean velocity and turbulent fluctuations at the computational inlet and apply Navier-Stokes

characteristic boundary conditions (NSCBC) at the outlet. Two thermal boundary conditions,

the isothermal wall and the isoflux wall, are considered since it is well known that these two

conditions have different effects on the turbulent heat transport. To validate the numerical

procedure, we calculated several isothermal cases and compared our results with previous DNS

and experimental results. Then heated ducts were simulated and results discussed.

4.2 Isothermal Duct Flows

4.2.1 Flow Configurations and Simulation Details

The computational domain is shown in Fig. 4.1. The size of the computational domain is

24Dh×Dh×Dh (Dh being the hydraulic diameter), in the x (streamwise), y and z (transverse)
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directions, respectively.
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Figure 4.1 Sketch of the computational domain

Vázquez and Métais (2002) showed that the two-point correlations of velocity fluctuations

for the isothermal duct is close to zero for x/Dh = 6.4. Therefore, a computational domain

of streamwise length 24Dh was considered to be sufficient. Two sets of grids were used: a

coarse grid consisting of 240 × 40 × 40 control volumes and a fine grid with 240 × 60 × 60

control volumes. Both grids were uniformly spaced in the x direction, but the grids were

clustered towards the walls using hyperbolic tangent stretching to correctly simulate the near-

wall regions. The distribution of the control volumes was identical in the y and z directions,

where

yi(zi) =
1

2

{
1 +

tanh(aξi)

tanh(a)

}

ξi = −1 + 2
i − 1

imax − 1
for i=1,...,imax (4.1)

a =
1

2
ln

[
1 + b

1 − b

]
for 0 ≤ b < 1.

The parameter b controls the stretching of the grid, and typically b = 0.7− 0.95. In wall units,

the minimum and maximum grid spacings in the y and z directions were, respectively, 1.98

and 10.50 for the course grid and 0.91 and 9.12 for the fine grid. The grid spacing in the x

direction was ∆x+ = 30.69 for both grids. The distance in wall units is defined by

y+ =
yuτ

νw
, (4.2)
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and the friction velocity uτ =
√

τw/ρw where τw is the shear stress and ρw is the fluid density

near the wall.

Two cases with Reynolds number Reb = 5000 and Reb = 8100 based on the hydraulic

diameter Dh and the bulk velocity ub were simulated. The Mach number M was taken to

be 0.001.

The initial flow field of the isothermal duct was constructed by superimposing a white noise

on two laminar Poiseuille profiles sheared along the y and z directions. Uniform pressure and

temperature were prescribed.

The boundary conditions at the walls were no-slip, isothermal. Periodic boundary con-

ditions and Navier-Stokes characteristic boundary conditions (NSCBC) were used along the

streamwise direction. NSCBC was applied to the duct outlet with a partial-reflecting bound-

ary condition. A periodic inflow generator was needed to provide proper velocity field to the

inflow boundary. All velocity components, u, v, w as well as density ρ at the inlet were given

by the inflow generator. The pressure at the inflow was extrapolated from the duct interior,

and then the inlet temperature was calculated from the extrapolated pressure and the density

given by the inflow generator. The computational domain for NSCBC method is shown in Fig.

4.2. Table 4.1 shows a summary of the simulation details.

u,v,w, ρ

p

8

16

Part II
 (test section)

Part I (
inflow generator)

x, u
y, v

z, wDh

Dh

Dh

Dh

Figure 4.2 Computational domain for NSCBC method



www.manaraa.com

67

Table 4.1 Simulation details of isothermal duct flows

Reb grid bc

Case 1 5000 240 × 40 × 40 Periodic

Case 2 5000 240 × 40 × 40 Characteristic

Case 3 5000 240 × 60 × 60 Periodic

Case 4 8100 240 × 40 × 40 Periodic

Case 5 8100 240 × 40 × 40 Characteristic

4.2.2 Results for Velocity Statistics

The velocity statistics were compared to the DNS results of Gavrilakis (1992) (Reb = 4410)

and Huser and Biringen (1993) (Reb = 10320) and the experimental results of Cheesewright

et al. (1990) (Reb = 4900). The flow statistics were collected over 120 time units (Dh/ub).

For the cases with periodic boundary conditions, the mean profile was obtained by averaging

in the homogeneous direction (streamwise direction here) and in time. For the cases with

characteristic boundary conditions, the mean value was acquired by averaging data at the

plane x/Dh = 14 in time.

Figures 4.3 and 4.4 shows mean streamwise velocity along the wall bisector z/Dh = 0.5.

In these figures, the mean velocity profile is normalized by the friction velocity as u+ = u/uτ .

As shown, very good agreement with the DNS results was achieved. The dash lines in these

figures represent the conventional law of the wall through empirical correlations. Very close to

the wall is the viscous sublayer which has linear velocity distribution u+ = y+ and away from

the wall is the “log-law” region which is represented by u+ = 1
κ lny+ + 5.5. The von Kármán

constant κ = 0.4. We can see our mean velocity profile is slightly above the log-law. This is

because we use a friction velocity defined by a four-wall-averaged shear stress. If we used the

local shear stress, the normalized mean velocity profile would move closer to the log-law.

The contours of the mean streamwise velocity and the mean secondary flow vectors in a

quarter of a cross-section are shown in Fig. 4.5. The mean secondary flow vectors show there

exist two counter-rotating vortices in each corner of the duct. The magnitude of the secondary

flow velocity is about 1 − 2% of the bulk velocity. For the Reb = 5000 case, wmax/ub = 1.9%.
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Figure 4.3 Mean velocity profile in wall coordinates, Reb = 5000

Though this secondary flow is rather weak, it has major effects on the momentum and heat

transfer processes in the duct. For example, the distortion of the streamwise velocity contours

in the vicinity of the corner is due to the momentum transfer by the secondary flows from the

duct center toward the corner. In this figure a streamline is highlighted and the corresponding

secondary flow impingement and ejection are marked.

The mean and instantaneous secondary flow fields are shown in Fig. 4.6. We can see there

are obvious flow variability with the instantaneous field, which is very different than the mean

field.

Figures 4.7 and 4.8 show the local wall shear stress (τ/τa) distribution. The wall shear

stress is normalized by the four-wall-averaged value (τa). We can see the results are very

sensitive to the Reynolds number. The local wall shear stress exhibits two local maxima

located around z/Dh = 0.2 and z/Dh = 0.5 for the Reb = 5000 case. The maximum located
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Figure 4.4 Mean velocity profile in wall coordinates, Reb = 8100

at the wall midpoint can be easily understood since the velocity gradient is large there. The

coincidence of the location of the other local maximum with the position of the secondary flow

impingement suggests a connection between these two phenomena: the impingement brings

high-speed fluid from the duct center to the wall which results in a higher velocity gradient.

Because the secondary flow ejection has contrary effect, we can expect the local maximum at

the wall midpoint to decrease as the secondary flow becomes stronger.

Figures 4.9 and 4.10 show the comparison between the present LES results (case 1, Reb =

5000) and experiment of Cheesewright et al. (1990) (Reb = 4900) for five different z-planes.

These mean velocity profiles are normalized by the velocity at the duct center uc. We can see

that their location and magnitude are very well reproduced by LES.

The LES and experimental results of turbulent intensity profiles are compared in Fig. 4.11

and Fig. 4.12 at five different z-planes. The root mean square (r.m.s.) values were obtained
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Figure 4.5 Secondary mean flow vectors and iso-contours of the mean

streamwise velocity

Figure 4.6 Mean and instantaneous secondary flow vectors

by operations like u′
rms =

√
< u′u′ >, where u′ = u− < u > and < · > denotes an average in

the x direction and in time. The r.m.s. values at the wall bisector are very much like those of

turbulent channel flows. Close to the corner, however, the profiles are totally different due to

the presence of walls.

To show the influence of the wall, we can use the anisotropy-invariant map proposed by

Lumley and Newman (1977). This map limits all possible states of turbulence to a small

region enclosed by three curves defined by the anisotropy tensor. The anisotropy tensor bij is

deduced from the Reynolds stress tensor:

bij =
< u′

iu
′
j > −2

3kδij

2k
, (4.3)
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Figure 4.7 Local wall shear stress distribution, Reb = 5000

where k = 1
2 < u′

iu
′
i >. The three invariants (I, II and III ) are given by

I = bii, II = bijbji, III = bijbjkbki. (4.4)

The different turbulent states can be identified by the curves of II as functions of III.

The isotropic turbulence corresponds to II = III = 0; the axisymmetric turbulence corre-

sponds to II = 3
2

(
4
3 |III|

) 2

3 and the two-component turbulence corresponds to II = 2
9 + 2III

(see Fig. 4.13). The top of the map represents the most anisotropic state, which is called

the one-component turbulence. In this state one of the r.m.s. velocity components dominates

the other two. The lowest point of the map is the most isotropic state, which is simply the

isotropic turbulence.

Anisotropy invariants II and III along three constant z-planes: z/Dh = 0.05, z/Dh = 0.25

and z/Dh = 0.5 were calculated for case 1. The arrows shown in Fig. 4.13 denote the direction

of increasing y. The solid line corresponds to z/Dh = 0.5, the dashed line to z/Dh = 0.25 and
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Figure 4.8 Local wall shear stress distribution, Reb = 8100

the dotted line to z/Dh = 0.05. We can see at the wall midpoint, i.e. z/Dh = 0.5, when the

distance from the wall increases the turbulence changes from two-component to one-component

and then becomes more and more isotropic as the duct center is approached. However, close

to the vertical wall, i.e. z/Dh = 0.05, the feature is totally different: the turbulence is highly

anisotropic near the corner and becomes more and more like two-component turbulence as

the vertical wall midpoint is approached. An instructive conclusion can be drawn: the flow

behavior at the duct wall midpoint is similar to those of the channel and circular pipe flows.

Finally, the average friction coefficients are compared with an empirical correlation. The

friction coefficient is defined as

Cf =
τw

1
2ρbu

2
b

. (4.5)

The empirical correlation of Jones (1976) is

1/Cf
1

2 = 4log10(2.25RebCf
1

2 ) − 1.6, (4.6)
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Figure 4.9 Comparison of the present LES mean streamwise velocity (—–)

with the experimental results of Cheesewright et al. (1990) (◦)
for five z-planes

Table 4.2 Comparison of friction coefficients of isothermal ducts

Reb grid bc Cf Cf from Jones’ correlation % error

Case 1 5000 240 × 40 × 40 Periodic 0.00845 0.00904 -6.5

Case 2 5000 240 × 40 × 40 Characteristic 0.00774 0.00904 -14.3

Case 3 5000 240 × 60 × 60 Periodic 0.00901 0.00904 -0.3

Case 4 8100 240 × 40 × 40 Periodic 0.00747 0.00792 -5.7

Case 5 8100 240 × 40 × 40 Characteristic 0.00740 0.00792 -6.6

and the results are summarized in Table 4.2. It can be seen from Table 4.2 that coarse grids

tend to underpredict the friction coefficient. The characteristic boundary condition typically

gives somewhat worse prediction than periodic boundary condition but the situation improves

for higher Reynolds number.

4.3 Heated Duct Flows

Four heated duct cases were simulated. The computational domain is the same as that given

in Fig. 4.2. Two different thermal boundary conditions were investigated. The first thermal

condition is to keep all the duct walls at a higher temperature Tw, and the second condition

is to maintain a constant wall heat flux qw. As before, the non-dimensional temperature Tw is
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Figure 4.10 Comparison of the present LES mean spanwise velocity (—–)

with the experimental results of Cheesewright et al. (1990)

(◦) for five z-planes

Table 4.3 Simulation details of heated duct flows

Reb grid bc qw Tw

Case 6 5000 240 × 40 × 40 Isothermal − 1.23

Case 7 5000 240 × 40 × 40 Isothermal − 2.0

Case 8 5000 240 × 40 × 40 Isoflux 0.002 −
Case 9 5000 240 × 40 × 40 Isoflux 0.004 −

normalized by the temperature of the fluid at the entrance and qw is defined as

qw =
q∗w

ρrefUrefcpTref
, (4.7)

where q∗w is the dimensional wall heat flux. These two conditions will be hereafter referred

to as isothermal wall and isoflux wall conditions, respectively. The computational details are

summarized in Table 4.3.

4.3.1 Streamwise Variation of Integral Parameters

It is somewhat surprising that no analytical or experimental results for thermally devel-

oping turbulent flow in rectangular ducts are available. Handbooks for guidance of practical

convective heat transfer design like that of Kakaç et al. (1987) suggest that results of circular

ducts may be used provided the hydraulic diameter Dh is the same. Since rectangular ducts are
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Figure 4.11 Comparison of the present LES u′
rms (—–) with the experimen-

tal results of Cheesewright et al. (1990) (◦) for five z-planes

characterized by secondary flows which cause higher temperatures near the corner and there

is no such an effect in circular pipes, the results for circular duct flows can only be regarded

as an approximation.

Figure 4.14 shows the dimensional streamwise distribution of local Nusselt number. The

local Nusselt number is defined as

Nuloc =
hxDh

kb
, (4.8)

where hx is the circumferentially averaged but axially local heat transfer coefficient and kb is

the bulk thermal conductivity.

As mentioned, only analytical and empirical correlations for the circular pipe are available.

From the analytical solution to the turbulent thermally developing flow (see §4.2.4 in Kakaç

et al., 1987), the local Nusselt number for isothermal (NuT ) and isoflux (NuH) boundary

conditions are nearly identical for Pr ≥ 0.7. The ratio of these two Nusselt numbers NuH

NuT

changes from ≈ 1.04 at x/Dh = 2 to ≈ 1.028 at station x/Dh = 15. Our results give 1.27

and 1.026, respectively. Several correlations for the Nusselt numbers in the thermal entrance

region of a smooth circular duct have been developed. Reynolds et al. (1969) proposed the

following correlation:

Nuloc

Nu∞
= 1 +

0.8(1 + 70, 000Re−3/2)

x/Dh
, (4.9)

where Nu∞ is the Nusselt number for the fully developed region. This correlation is valid
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Figure 4.12 Comparison of the present LES w′
rms (—–) with the exper-

imental results of Cheesewright et al. (1990) (◦) for five

z-planes

for x/Dh > 2, 3000 < Re < 5 × 104 and Pr = 0.71. Kays and Crawford (2005) also gave

a correlation of Nusselt number in the thermal entry length of a circular tube under isoflux

condition. Since the heating level is high enough to cause considerable property variations, we

will choose the correlations taking this effect into account to calculate Nu∞. Humble et al.

(1951) proposed

Nu∞ = 0.023Re0.8
D Pr0.4(

Tw

Tb
)−0.55. (4.10)

The distributions of four-wall averaged wall temperature and bulk temperature are shown in

Figs. 4.15 and 4.16.

The comparison between the present LES with the above correlations are summarized in

Table 4.4.

As we can observe, the heated square duct cases did not compare favorably with the

correlation for a circular pipe. The reason is due to the poor heat transfer performance at the

duct corner.

Figure 4.17 shows the surface heat flux distribution for isothermal ducts and surface tem-

perature distribution for isoflux ducts at three streamwise stations. Figure 4.18 shows the

variation of the local wall shear stress τw around the duct perimeter for heated ducts at dif-

ferent streamwise stations. In these figures, h = Dh/2 is the half width of the duct. The local
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wall shear stress is normalized by the local averaged wall shear stress τw
a. At x = 2Dh, the

wall shear stress profiles of heated ducts are still very similar to those of the isothermal duct.

As streamwise distance increases, the peak value of each heated duct profile gradually increases

and shifts from the corner toward the mid-wall. The wall shear stress at the mid-wall, however,

gradually decreases at the same time. The higher heating rate results in more shift of the peak

value.

The local wall heat flux distributions of isothermal flows (Fig. 4.17) show the same tendency

which occurs in the wall shear stress distributions. The positions where the maximum values

of wall heat flux and wall shear stress appear also agree with each other. These phenomena

can be explained by the behavior of the secondary flows (see Fig. 4.5). Near the mid-wall, as

flow goes downstream, the gradually enhanced secondary flows transport hot and slow fluid

from the wall to the central area which reduces the gradients of velocity and temperature. As
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Figure 4.14 Streamwise distribution of local Nusselt number

a result, both local wall shear stress and local wall heat flux decreases at the mid-wall. Around

the region y ≈ 0.4h, the secondary flows bring relatively cold and fast moving fluid from the

duct interior toward the wall. This increases velocity and temperature gradients and gives rise

to greater local wall shear stress and local wall heat flux.

We can see for the isothermal ducts, the heat flux close to corner is very low and for the

isoflux ducts the temperature near corner is very high. Both situations imply impaired heat

transfer performance. If we consider the Nusselt number at the middle duct wall rather than the

four-wall averaged Nusselt number, we have better agreements between LES and correlations

for the isoflux cases as shown in Table 4.5. This can be explained by the fact indicated in

the last section, that is, the flow behavior at the duct wall midpoint is similar to those of

the channel and circular pipe flows. However, the discrepancy between the present isothermal

ducts and correlations cannot be reduced this way. This suggests that for rectangular ducts,

different thermal boundary conditions have significant influence on the flows.

To determine the correct Nusselt number distribution, more analytical and experimental

research is needed. It is crucial to obtain velocity, eddy viscosity and turbulent Prandtl number
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Table 4.4 Comparison of local Nusselt numbers of heated ducts, four-wall

averaged values

Nu∞ x/Dh = 8 % error x/Dh = 14 % error

Case 6 16.29 12.76 − 11.39 −
Reynolds (1969) 18.24 -30.0 17.41 -34.6

Kays (2005) 17.86 -28.5 16.94 -32.8

Case 7 12.47 10.22 − 8.18 −
Reynolds (1969) 13.96 -26.8 13.32 -38.6

Kays (2005) 13.67 -25.2 13.02 -37.2

Case 8 14.45 13.70 − 11.86 −
Reynolds (1969) 16.18 -15.3 15.44 -23.2

Kays (2005) 15.84 -13.5 15.09 -21.4

Case 9 12.47 12.97 − 10.32 −
Reynolds (1969) 13.96 -7.1 13.32 -22.5

Kays (2005) 13.67 -5.1 13.02 -20.7

Table 4.5 Comparison of local Nusselt numbers of heated ducts, middle

wall values

Nu∞ x/Dh = 8 % error x/Dh = 14 % error

Case 8 14.45 17.36 − 14.86 −
Reynolds (1969) 16.18 7.3 15.44 -3.8

Kays (2005) 15.84 9.6 15.09 -1.5

Case 9 12.47 15.16 − 11.94 −
Reynolds (1969) 13.96 8.6 13.32 -10.4

Kays (2005) 13.67 10.9 13.02 -8.3
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Figure 4.15 Streamwise distribution of four-wall averaged wall tempera-

ture

distributions in order to perform an analysis of the turbulent heat transfer problem and this

is the business of the next section.

4.3.2 Downstream Statistics

Figures 4.19 and 4.20 show the mean streamwise velocity and mean temperature profiles

along the wall bisector at three different downstream locations: x = 2Dh, x = 8Dh and

x = 14Dh. Here the mean velocity and mean temperature are normalized by the local friction

velocity and local friction temperature. That is, they are given in wall coordinates. The mean

temperature difference θ+ is given as

θ+ =
Tw − T

Tτ

Tτ =
qw

ρwcpuτ
. (4.11)
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Figure 4.16 Streamwise distribution of bulk temperature

We can discern some general trends from these figures: both velocity and temperature

profiles away from the wall (large y+) depart more from their log-law and approach more

closely to the laminar prediction as the flow progresses downstream. This is known as “re-

laminarization”. A simple explanation is that as temperature increases the molecular viscosity

of the gas also increases which results in the drop of the Reynolds number. One may notice

the above trend does not always hold, especially in the high-heating isoflux case (Case 9)

in which the “tail” of the U+ profile drops as x/Dh becomes large. The same results have

been obtained in the experiments of Shehata and McEligot (1998) carried out in a vertical

pipe. This apparent discrepancy may be due to the effects of significant property variations

on local friction velocity. With a stronger heating rate, the density decreases while molecular

viscosity increases substantially near the wall which causes the local friction velocity to increase



www.manaraa.com

82

y/h

q w
/q

wa

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Case 6
Case 7

x=2Dh

y/h

q w
/q

wa

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Case 6
Case 7

x=8Dh

y/h

q w
/q

wa

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Case 6
Case 7

x=14Dh

y/h

T
w
/T

wa

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

Case 8
Case 9

x=2Dh

y/h

T
w
/T

wa

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

Case 8
Case 9

x=8Dh

y/h

T
w
/T

wa

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

Case 8
Case 9

x=14Dh

Figure 4.17 Distributions of surface heat flux and surface temperature at

three streamwise stations

dramatically. If the central velocity increase cannot offset this increase of friction velocity, an

illusive drop of U+ will be observed.

Huang et al. (1995) suggested to use semi-local coordinates, U? or θ? versus y? instead of

U+ versus y+ when large property variations are involved. In these coordinates, local rather

than wall values of density and molecular viscosity are used:

U? =
< u >

uτ
?

; θ? =
Tw − T

Tτ
?

uτ
? =

√
τw

ρ(y)
; Tτ

? =
qw

ρ(y)cpuτ
?

y? =
δyuτ

?

ν(y)
. (4.12)

Figures 4.21 and 4.22 show the mean streamwise velocity and mean temperature along the

wall bisector which is plotted in semi-local coordinates. The velocity profiles then show better

consistency with temperature profiles. It can be seen that at the same streamwise location

stronger heating rate results in thicker viscous layer which leads to more laminar-like mean

temperature profile. For a fixed heating rate, the viscous layer develops in the streamwise

direction and results in a trend toward laminarization of the mean profiles.
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Figure 4.18 Local wall shear stress

It is also of interest to examine the effects of heating on turbulent intensities. The turbulent

kinetic energy profiles along the wall bisector are shown in Fig. 4.23. The turbulent kinetic

energy is defined as k = 1
2 < ui

′ui
′ >. To eliminate any ambiguity that may be caused

by property variations, the turbulent kinetic energy is normalized by square of the reference

velocity. All profiles increase from zero at the wall to a maximum and then decrease to

the centerline. The position of the maximum shifts toward the center as the streamwise

distance increases. In the two isoflux cases, the turbulent kinetic energy decreases after station

x = 8Dh which implies strong laminarization of the flows. For the isothermal flows, the current

domain length is still not long enough to show the damping of the turbulent kinetic energy

far downstream. It can be noticed that in the largest heating rate case, case 9, the turbulent

kinetic energy at the duct center decreases as x increases which suggests that the viscous

sublayer has reached the duct center. It can be observed that at the same streamwise location

the turbulent kinetic energy decreases when the heat transfer level is enhanced.

The distributions of the Reynolds stress < −u′+v′+ > along the wall bisector are shown

in Fig. 4.24. In the two isoflux cases, the Reynolds stress keeps decreasing as the streamwise

distance increases. For both isothermal and isoflux conditions, as the heat transfer rate becomes
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Figure 4.19 Streamwise mean velocity and temperature profiles for heated

isothermal ducts along the wall bisector: in wall coordinates

higher, the Reynolds stress at the same streamwise location decreases.

The rms temperature fluctuations normalized by the local averaged friction temperature

along the wall bisector are shown in Fig. 4.25. Almost the same features of the turbulent kinetic

energy profiles can be found in the temperature fluctuations such as the increase-decrease shape

and the shifting of the peak positions. In the isoflux flows, the rms temperature fluctuation at

the wall is not zero as in the isothermal flows because the heat conduction in the wall is not

taken into account (Kasagi et al., 1989). The rms value at the wall is about 1.8 ∼ 2.5 for scalar

transport (Kasagi et al., 1989; Kong et al., 2000; Pallares and Davidson, 2002). In the current

study, this value near the inlet is about 1.2. For the higher heating rate isoflux case (case

9), before x = 8Dh, the temperature fluctuation profiles are similar to those of corresponding

lower heating rate case (case 8); however, after station x = 8Dh, the profiles begin to decrease

as a result of strong heating. The same trend has been confirmed in the DNS research for

strongly heated pipe flow (Satake et al., 2000).

The distributions of the streamwise turbulent heat flux < −u′T ′ > along the wall bisector

are shown in Fig. 4.26. Obvious similarity between the profiles of < −u′T ′ > and T+
rms can
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Figure 4.20 Streamwise mean velocity and temperature profiles for isoflux

ducts along the wall bisector: in wall coordinates

be observed.

The distributions of the transverse turbulent heat flux < v′T ′ > along the wall bisector

are shown in Fig. 4.27. At a specific streamwise location, both streamwise and transverse

turbulent heat fluxes decrease with increasing heat transfer rate.

As indicated by Monin and Yaglom (1971), in the vicinity of the wall, the mean and

fluctuating quantities can be expanded by the Taylor series. For both isothermal and isoflux

walls, we have

u′ = a1y + a2y
2 + · · · ,

v′ = b2y
2 + b3y

3 + · · · , (4.13)

(4.14)

and for the isothermal wall,

T ′ = c1y + c3y
3 + · · · , (4.15)

while for the isoflux wall,

T ′ = d0 + d1y + d3y
3 + · · · , (4.16)
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Figure 4.21 Streamwise mean velocity and temperature profiles for heated

isothermal ducts along the wall bisector: in semi-local coordi-

nates

where the coefficients ai, bi, ci and di are functions of x, z and t. Therefore, the streamwise

and transverse turbulent heat fluxes for the isothermal wall are given by

< −u′T ′ > = − < a1c1 > y2 + · · · ,

< v′T ′ > =< b2c1 > y3 + · · · . (4.17)

(4.18)

For the isoflux wall, the streamwise and transverse turbulent heat fluxes are

< −u′T ′ > = − < a1d0 > y + · · · ,

< v′T ′ > =< b2d0 > y2 + · · · . (4.19)

(4.20)

The present results are shown in Fig. 4.28, which shows the above equations are valid.

The profiles of the turbulent Prandtl number along z = 0.5Dh are shown in Fig. 4.29.

The turbulent Prandtl number is defined as the ratio of turbulent eddy viscosity νt to eddy
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Figure 4.22 Streamwise mean velocity and temperature profiles for isoflux

ducts along the wall bisector: in semi-local coordinates

diffusivity αt:

Prt =
νt

αt
, (4.21)

where

νt =
1

Re

ν∗
t

νref
=

− < u′v′ >

∂U/∂y
, αt =

1

Re

α∗
t

νref
=

− < v′T ′ >

∂T/∂y
. (4.22)

The distributions of eddy viscosity, νt, are shown in Fig. 4.30. From Fig. 4.29 we can

see for the isothermal cases, Prt does not vanish at the wall. For the low heating case (case

6), Prt > 1 as y+ ∼ 40 while Prt < 1 as y+ > 40. Comparing with the turbulent channel

flow, where Prt > 1 as y+ ∼ 60 while Prt < 1 as y+ > 60, we can see heating has a effect to

decrease Prt. This tendency becomes more obvious for the high heating case (case 7), in which

Prt is almost always less than unity except close to the wall. Also it can be observed that for

high heating isothermal flow (case 7), the turbulent Prandtl number along the wall bisector is

almost a constant, namely 0.9. For the isoflux cases, the low heating case (case 8) behaves like

a isoflux turbulent channel flow (Kong et al., 2000); for the high heating case (case 9), Prt is

also roughly a constant, and the value is about 1.0.
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Figure 4.23 Turbulent kinetic energy

4.4 Conclusions

Large eddy simulation of hydrodynamically developed turbulent air flow thermally devel-

oping in a four-wall-heated square duct at low Mach number were carried out to study the

influence of strong heating on the structure of the flow. The Navier-Stokes characteristic

boundary conditions have been incorporated into finite volume LU-SGS scheme to calculate

developing flow. Five isothermal (unheated) ducts were used as test cases to validate the code

and numerical scheme. Very good agreement with DNS and experimental results was obtained.

Turbulent duct flows under heating with constant wall temperature and constant wall heat

flux conditions were simulated. The strong heating causes significant property variations in

the fluids and leads the flow to become more laminar-like. The local heat transfer coeffi-

cients decrease as the heat transfer rate increases. The mean velocity and temperature profiles

approach laminar distributions downstream. The turbulent kinetic energy, temperature fluc-

tuations and Reynolds stress also decrease. Heat transfer was found to have obvious impact

on the secondary flows. The secondary flows take part in the momentum and heat transport
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Figure 4.24 Reynolds stress

and are responsible for the modification of the distributions of wall shear stress and wall heat

flux. Also heating has an effect to decrease the magnitude of turbulent Prandtl number and

make its distribution more uniform.
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Figure 4.26 Streamwise turbulent heat flux
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Figure 4.27 Transverse turbulent heat flux
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CHAPTER 5. LARGE EDDY SIMULATION OF TURBULENT

HEAT TRANSFER IN A ROTATING SQUARE DUCT

In this chapter1, large eddy simulations of turbulent mixed convection heat transfer in a

variable-property thermally developing rotating square duct are presented. A finite volume

lower-upper symmetric Gauss-Seidel (LU-SGS) scheme coupled with time derivative precondi-

tioning is used to simulate low Mach number compressible three-dimensional turbulent flow.

A localized dynamic subgrid-scale (SGS) model is used to evaluate the unresolved stresses.

Characteristic outflow conditions are employed so that the flow can develop further as it re-

sponds to the heating as well as rotating conditions. Several isothermal rotating duct cases

were calculated and compared with previous DNS results to validate the numerical procedure.

Then heated rotating ducts under constant wall heat flux are simulated. The wall heat flux

is strong enough to cause the flow to separate in the outward mixed convections. A vanishing

inviscid flux derivative method is designed to overcome the difficulty caused by the velocity

reversal at the duct outlet when the flow separates. The Reynolds number varies from 4,500 to

10,000; The rotation number changes from 0.0133 to 0.176; The Grashof number ranges from

−2.2 × 106 to 2.2 × 106. Simulation of forced and mixed convection cases shows that the flow

is strongly influenced by the Coriolis and centrifugal buoyancy forces through complex and

delicate mechanisms.

5.1 Introduction

Turbulent flow and related heat transfer inside a square duct rotating about an axis per-

pendicular to one of the walls has many engineering applications such as internal cooling of

1This chapter is based on the paper published in the International Journal of Heat and Fluid Flow, 27,

371–390, 2006.
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turbine blades and automobile brakes. One of the primary concerns in these applications is the

heat transfer coefficients on each wall of the rotating passage when the fluid inside is thermally

developing. In turbulent duct flows, it is well known that Prandtl’s secondary flow of the

second kind has a significant effect on the transport of heat and momentum. This secondary

flow causes distortion of the isolines of mean velocity, temperature, and their fluctuations.

With rotation, Coriolis and centrifugal buoyancy forces change the mean velocity profile as

well as cause a more complicated secondary flow pattern and, as a consequence, modify the

heat transfer coefficient distributions on each wall.

Due to its value in military and commercial applications, the theoretical research on rotating

duct flows can be traced back as far as to the 1970s. Smirnov (1978) obtained an asymptotic

solution of the laminar rotating duct and gave a drag formula for this situation. Ovchinnikov

and Rukolaine (1985) studied the development of laminar flow in a prismatic duct uniformly

rotating about the transverse axis. Although extensive experiments (Wagner, 1991a; Morris

and Ghavami-Nasr, 1991; Han and Zhang, 1992; Han et al., 1993; MacFarlane et al., 1998;

Liou et al., 2001; Liou et al., 2003; Mårtensson et al. 2002) and numerical studies based on

the Reynolds-averaged Navier-Stokes (RANS) equations (Prakash and Zerkle, 1992; Tekriwal,

1994; Dutta et al., 1996; Hwang et al., 1998; Lin et al., 2001; Belhoucine et al., 2004) have

been carried out on this topic, relatively few direct numerical simulations (DNS) or large

eddy simulations (LES) results are available, especially results in which property variations

are taken into account. Kristoffersen and Andersson (1993) did direct simulations of low

Reynolds number turbulent flow in a rotating channel. Tafti and Vanka (1991) carried out

large eddy simulations of rotating turbulent channel flow.

Simulation of isothermal rotating ducts by Gavrilakis (2004) is the only available DNS

result for rotating ducts according to the authors’ knowledge. Pallares and Davidson (2000,

2002) did LES of turbulent heat transfer in both stationary and rotating square ducts. Murata

and Mochizuki (1999, 2001, 2004) did large eddy simulations of turbulent heat transfer in

rotating ducts with and without ribs. Most of these recent papers used the incompressible

Navier-Stokes equations and periodic boundary conditions for streamwise velocity and tem-
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perature because the fully developed region was their main concern. A good review on rotating

internal flows without heat transfer can be found in chapter seven of Internal flow by Greitzer

et al. (2004).

The previous researches provided much insight into the nature of the turbulent heat trans-

fer in a fully developed rotating duct. However, a full appreciation of this phenomenon would

require a more complete understanding of the details of the fluid motion. This led to the initia-

tion of the current effort to simulate hydrodynamically developed turbulent air flow thermally

developing in a four-heated-wall rotating square duct at low Mach number using large eddy

simulation. The objective of this study is to develop an LES procedure to correctly predict

complex turbulent flow phenomena with heat transfer and property variations and to obtain

a better understanding of the physics of turbulent flow under rotating conditions. This study

analyzes the air flow thermally developing in an orthogonally rotating straight smooth square

duct at different Reynolds and rotation numbers. The centrifugal buoyancy effect is examined

by varying the Grashof number. The constant wall heat flux condition is used in the present

research. A finite volume LU-SGS scheme coupled with time derivative preconditioning is em-

ployed to solve the three-dimensional low Mach number compressible Navier-Stokes equations.

Characteristic outflow boundary conditions are applied so that the flow can develop further

as it responds to heating and rotating conditions. This method has been successfully imple-

mented in the study of turbulent heat transfer in a stationary square duct (Qin and Pletcher,

2004) and LES of supercritical CO2 pipe flow with constant wall heat flux (Wang and Pletcher,

2005). A vanishing inviscid flux derivative method is designed to avoid the possible difficulty

caused by velocity reversal at the outlet which may occur as a result of an opposing centrifugal

buoyancy force. To verify the code, we calculate several isothermal rotating duct cases and

compare our results with DNS results. Then heated duct flow cases are simulated and the

results are compared with available numerical and experimental data.

The rest of this paper is organized in two sections: the governing equations and the numer-

ical method are described in the following section which is followed by the presentation and

discussion of results.
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5.2 Governing Equations and Numerical Scheme

5.2.1 Governing Equations

For gas flows with property variations, the compressible Navier-Stokes equations are ap-

plicable even if a low Mach number case is treated. The governing equations for large eddy

simulation are obtained by filtering the nondimensional compressible Navier-Stokes equations

in a Cartesian coordinate system. In the current research, the top-hat filter is used and Favre

averaging is employed to simplify the filtered equations. The resulting equations can be written

in vector form as:

∂Ū

∂t
+

∂F̄i

∂xi
= S̄, (5.1)

where

Ū = (%̄, %̄ũ, %̄ṽ, %̄w̃, %̄ẽ)T . (5.2)

The total energy

ê = cvT̃ +
1

2
ũiũi. (5.3)

The resolved fluxes F̄i are

F̄i =




%̄ũi

%̄ũiũ1 − σ̂i1 + τi1

%̄ũiũ2 − σ̂i2 + τi2

%̄ũiũ3 − σ̂i3 + τi3

%̄êũi − ũj σ̂ij + q̂i + qti




, (5.4)

where the stress tensor is

σ̂ij = −p̄δij +
2µ̄

Rer
(S̄ij −

1

3
S̄kkδij), (5.5)

and S̄ij is the strain rate tensor which is

S̄ij =
1

2
(
∂ũi

∂xj
+

∂ũj

∂xi
). (5.6)

The heat flux vector is given by Fourier’s law

q̂i = − cpµ̄

RerPr

∂T̃

∂xi
(5.7)
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The subgrid-scale stress is

τij = %̄(ũiuj − ũiũj), (5.8)

and the subgrid-scale heat flux

qti = %̄cv(T̃ ui − T̃ ũi). (5.9)

S̄ is the resolved source term including any possible body forces. Under a rotating frame, the

flow will feel both Coriolis forces and a centrifugal buoyancy force. When the rotation is in

the z direction and the x coordinate is aligned with the flow direction as Fig. 5.1 shows, the

source term becomes

S = (0, 2%̄Roũ2 +
Gr

ηRer
2 %̄,−2%̄Roũ1, 0,−α − π − ε)T , (5.10)

where the Reynolds number, rotation number Ro and Grashof number Gr are defined as

Rer =
%rVrLr

µr
; Ro =

ωLr

Vr
; Gr =

%r
2β(Tw − Tr)ω

2rmLr
3

µr
2

, (5.11)

in which rm is the mean rotating radius, ω the angular velocity and η = β(Tw − Tr). Note

we only consider the flow region far away from the rotation axis, therefore, the variations of x

coordinate inside the interested flow region is negligibly small compared with the large mean

rotating radius rm. Two situations, namely outward flows and inward flows, are studied for the

heated duct cases (see Fig. 5.1). For the outward flows, fluid flows away from the rotation axis

and the Grashof number is positive. Since the flow is in the same direction as the centrifugal

force, buoyancy acts against the high temperature fluid flow (opposing buoyancy); for the

inward flows, on the contrary, fluid flows toward the rotation axis and the Grashof number is

negative. Since the flow is in the opposite direction to that of the centrifugal force, buoyancy

aids the high temperature fluid flow (aiding buoyancy). The last three terms in the sorce term

are

α = ũj
∂τij

∂xi
, π = p

∂ui

∂xi
− p̄

ũi

xi
, ε = σij

∂uj

∂xi
− σ̄ij

∂ũj

∂xi
. (5.12)

For the present work, α, π and ε are neglected because of the low Mach number (0.001) used

(Vreman et al., 1995).
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For an ideal gas, the equation of state is

p̄ = %̄RT̃ , (5.13)

and the molecular viscosity is evaluated by the power law

µ = T 0.71. (5.14)

The nondimensional variables are defined as follows,

xi = xi
?

Lr
t = t?

Lr/Vr
ui = ui

?

Vr

p = p?

%rVr
2 % = %?

%r
T = T ?

Tr

e = e?

Vr
2 R = R?

Vr
2/Tr

cp =
cp

?

Vr
2/Tr

µ = µ?

µr
, cv = cv

?

Vr
2/Tr

,

(5.15)

in which dimensional variables are denoted with a superscript asterisk and the subscript r

denotes reference values. Mr, Lr, Vr, %r, Tr and µr are inflow Mach number, hydraulic diameter

of the duct, inflow mean velocity, inflow mean density, inflow mean temperature and molecular

viscosity evaluated by inflow mean temperature, respectively.
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Figure 5.1 Sketch of the computational domain for rotating duct flows

5.2.2 Subgrid-Scale Modeling

The above system can be closed by modeling the subgrid-scale stress and heat flux. The

localized dynamic model proposed by Piomelli and Liu (1995) is used to evaluate the subgrid-
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scale stress terms. The turbulent heat flux is modeled following Wang and Pletcher (1996).

5.2.3 Numerical Scheme

The governing equations are solved with a coupled finite volume method (Qin and Pletcher,

2004). Time derivative preconditioning developed by Pletcher and Chen (1993) is adopted

to overcome the singularity caused by low Mach number. This preconditioning introduces a

pseudo temporal derivative into the equation. Then the preconditioned time accurate governing

equation is solved by the lower-upper symmetric Gauss-Seidel (LU-SGS) scheme (Rieger and

Jameson, 1988) in a dual time-stepping approach.

5.2.4 Outflow Boundary Treatment

To let the flow develop thermally, the whole computational domain is separated into two

parts, as shown in Fig. 5.1. Spatially periodic boundary conditions are applied to the first

(or, the inflow generator) part of the domain to generate a realistic fully developed turbulent

inflow field for the second (or, the test section) part. The pressure at the test section entrance

is interpolated from the interior of the domain, however. To ensure that the mass flow rate of

the two parts are the same, the temperature at the entrance of the test section is recalculated

according to the interpolated pressure so that the density is unchanged across the entrance

section. In the inflow generator, since a periodic boundary is used, a forcing function f(t) is

employed in the streamwise momentum equation to maintain a constant targeted mass flow

rate. This forcing function term has been widely used in numerical simulations (see e.g. Wang

and Pletcher, 1996). Such a forcing function is not needed in the test section.

At the outlet of the test section, Navier-Stokes characteristic boundary conditions (NSCBC)

are applied. This method, which intends to provide time-accurate boundary conditions, was

proposed by Thompson (1987, 1990) and then was further developed by Poinsot and Lele

(1992) and Kim and Lee (2000, 2004). This method is incorporated into the LU-SGS solver

as follows.

After dropping all filtering symbols, Eq. (5.1) can be recast in terms of primitive variables
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as

[T ]
∂W

∂t
+

∂Fi

∂xi
= S, (5.16)

where W = (p, u, v, w, T )T and [T ] = ∂U

∂W
is the Jacobian matrix. The flux term Fi can be

decomposed into two parts: the inviscid part Fi and another part Fi, which takes care of

the viscous and subgrid-scale terms. Consider the characteristic form of Eq. (5.16) in the x1

direction (since the normal to the outlet is in the x1 direction in the present work):

[T ]
∂W

∂t
+

∂F1

∂x1
+ C = 0, (5.17)

where C is the combination of the source term and flux derivative terms excluding ∂F1

∂x1
. Define

[A]i = ∂Fi

∂W
, [A ] = [T ]−1[A]1 and [Λ] = [S]−1[A ][S], where [Λ] is the diagonal matrix whose

elements are eigenvalues of [A ], and the rows of [S]−1 are left eigenvectors. For an ideal gas,

the five eigenvalues of [A ] are (u1 + c, u1− c, u1, u1, u1) where c is the local sound speed. Then

Eq. (5.17) can be written as

[S]−1 ∂W

∂t
+

[Π]︷ ︸︸ ︷
[Λ][S]−1 ∂W

∂x1︸ ︷︷ ︸
L

+[S]−1[T ]−1C = 0. (5.18)

By employing the characteristic form, waves with different velocities can be determined

separately. At the outflow boundary, waves leaving the domain are calculated using interior

points and one-sided differences. Waves propagating into the domain, however, should be

estimated by available information outside the domain and also by examination of the above

equation. In the current simulation, if no heating is added, u1 > 0 holds for all control volumes

and L2 is the only incoming wave since its speed is negative (u1 − c). However, if heating is

added and Gr > 0, the opposing buoyancy force may cause the flow to separate and then the

streamwise velocity becomes negative. Thus, there will be four rather than one incoming waves

that need to be determined. To avoid such a situation, one can add an insulated buffer zone to

the exit so that the separated region is eliminated. In the present study, instead of appending

a buffer zone and then applying characteristic boundary conditions, a vanishing inviscid flux

derivative method is designed for the outlet regions where u1 < 0:

∂F1

∂x1
= 0. (5.19)
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By multiplying by [S], Eq. (5.18) becomes

∂W

∂t
+ [S]L + [T ]−1C = 0. (5.20)

A constant pressure at infinity is used as the outlet boundary condition in the present work.

This is a partially reflecting condition. From Eq. (5.20), by neglecting the source, transverse

and viscous terms, which is also called the local one-dimensional inviscid (LODI) assumption,

we have

∂p

∂t
+

γ

γ − 1
%(L1 + L2) = 0. (5.21)

Let ∂p
∂t = 0, then

L2 = −L1. (5.22)

To take account of the effect of pressure at infinity, Eq. (5.22) is modified by Poinsot and Lele

(1992) as

L2 = −L1 + K(p − p∞), (5.23)

where K is a positive constant (Rudy and Strikwerda, 1980). Since L = [Π]∂W

∂x1
, the matrix [Π]

is changed into [Π]′ according to Eq. (5.22). The waves at the outlet boundary thus becomes

L = [Π]′
∂W

∂x1
+ b, (5.24)

where b = (0, K(p − p∞), 0, 0, 0)T And Eq. (5.18) becomes

[S]−1 ∂W

∂t
+ [Π]′

∂W

∂x1
+ b + [S]−1[T ]−1C = 0. (5.25)

Multiplying by [T ][S], Eq. (5.25) becomes

[T ]
∂W

∂t
+ [A]′1

∂W

∂x1
+ C′ = 0, (5.26)

or

[T ]
∂W

∂t
+

∂F ′
1

∂x1
+ C′ = 0, (5.27)

where [A]′1 = [T ][S][Π]′, C′ = C+[T ][S]b. Equation (5.27) is of the same form of Eq. (5.17) and

should be applied at the outlet surface as Fig. 5.2 indicates. At the outlet control volume ni,

the x1 direction flux derivative term should be evaluated according to Eq. (5.17) at face j = 3
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(interior face) and according to Eq. (5.27) at face j = 1 (outlet boundary face), respectively.

Note that F ′
1 is unknown (though we do know

∂F ′

1

∂x1
and

∂F ′

1

∂W
, which is [A]′1), thus, we evaluate

the integral of the x1 direction flux derivative term through the boundary control volume ni

as

∫

Ω

∂F1

∂x1
dΩ ≈ (F

(m)
1ni − F

(m)
13 )S13

+ [([A]1∆W)ni − ([A]1∆W)3]S13

+
∂F ′

1

∂x1

(m) Ω

2

+ [([A]′1∆W)1 − ([A]′1∆W)ni]S13, (5.28)

where S13 is the area of face j = 1 and j = 3. The subscript ni means the value at the center

of control volume ni. For the preconditioned system, the process is essentially the same except

that the eigenvalues of the matrix change. In the current LU-SGS scheme, the unsymmetry of

equations used at different surfaces of the outlet control volume will cause the diagonal matrix

in the L−D −U decomposition to be no longer exactly diagonal. However, this difficulty can

be removed by moving the non-diagonal elements to the corresponding locations in the lower

and upper matrices.

5.3 Results and Discussion

5.3.1 The Isothermal Duct

Several fully developed isothermal rotating duct cases (case 1 to 4) were simulated. For

these cases, step periodic boundary conditions were used. Cases 1 and 2 are compared with

DNS results of Gavrilakis (2004). The computational domain is shown in Fig. 5.1. A

240 × 40 × 40 grid was used for all computations. The grids were stretched toward the duct

walls by using a hyperbolic tangent function (see Fig. 5.3). The effect of the grid spacing

on the computed result was checked by increasing the grid number to 240 × 60 × 60 for cases

1 and 2, and no major differences have been observed (see Figs. 5.5,5.6,5.7 and 5.11). The

Mach number was 0.001 and the nondimensional physical time step was 8.0 × 10−3. The

computational details are in Table 5.1.
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Figure 5.2 Sketch of the outlet boundary

Figure 5.4 shows the mean velocity fields (only half the fields are shown since symmetry

is taken into account). A main feature is the persistent secondary flows which are constituted

by two counter-rotating cells (in half the cross section). The centers of the larger cells are

close to the stable wall and their location moves to the corner as rotation number increases.

The smaller cells are near the unstable wall and under the corner bisectors. The strength and

size of the smaller cells increase when rotation number is increased. The generation of the

big cell can be attributed to the balance between pressure gradient and the Coriolis force. At

the center of the duct (z/Dh = 0.5), the Coriolis force in the y direction is balanced by the

pressure gradient. At the side walls (z/Dh = 0 and 1), an Ekman layer is formed since the

Coriolis force is reduced as streamwise velocity decreases and the pressure gradient in the y

direction drives fluid so that it is balanced by both the Coriolis force and the viscous force.

Though somewhat different from the ordinary concept of Ekman boundary layer which

gives a spiral velocity variation, the Ekman layer in the current scenario is caused by the same

force balance and has the same thickness as those of the traditional Ekman layer.

At the stable wall (y/Dh = 1), a Stewartson layer (Stewartson, 1957) comes into being to

transport mass flux from the Ekman layer to the interior flow. At the unstable wall (y/Dh = 0),
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Figure 5.3 A stretched grid

secondary flow of the second kind dominates since turbulence is enhanced there.

The secondary flow convection shifts the peak value of axial velocity toward the unstable

wall which results in an almost linear velocity region (see Figs. 5.5 and 5.6). The range of the

linear velocity region increases with higher rotation number. The slope of the velocity profile,

however, seems insensitive to the rotation rate. This can be compared with rotating turbulent

channel flows, in which a linear velocity profile also shows up, however, its slope is 2Ro and its

peak shifts toward the stable wall. When rotation rate increases, the Taylor-Proudman regime

develops. That is, the interior flow field becomes uniform in the z direction (see case 4 in Fig.

5.4). This phenomenon is a result of the balance between pressure gradient and Coriolis force,

which has no component in the z direction.

Figures 5.5 and 5.6 show the streamwise mean velocity profiles along the wall bisector

z/Dh = 0.5 and Fig. 5.7 shows the streamwise mean velocity profiles along the corner bisector

near the unstable wall. The mean velocity is normalized by the global wall friction velocity.

The results are compared with the DNS results of Gavrilakis (2004). Very good agreement

has been obtained. Figure 5.8 compares the streamwise mean velocity profiles obtained for

two rotating cases with that for a non-rotating case in wall coordinates. The inner variables
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Table 5.1 Simulation details of rotating duct flows

Case Re Ro qw Tw/Tb Gr

1 4,500 0.0133 0.0 1.0 0.0

2 4,500 0.0266 0.0 1.0 0.0

3 5,000 0.088 0.0 1.0 0.0

4 5,000 0.176 0.0 1.0 0.0

5 5,000 0.176 6.4 × 10−4 - 0.0

6 5,000 0.176 6.4 × 10−4 - 1.1 × 106

7 5,000 0.176 6.4 × 10−4 - 2.2 × 106

8 5,000 0.176 6.4 × 10−4 - −1.1 × 106

9 5,000 0.176 6.4 × 10−4 - −2.2 × 106

10 5,000 0.088 6.4 × 10−4 - 2.2 × 106

11 10,000 0.088 1.1 × 10−3 - 2.2 × 106

U+ and y+ are based on the local friction velocities. The laminarization of turbulence on the

stable side can be observed from the increased slope in the log-law region. On the unstable

side, the enhanced turbulence causes a decrease of the slope. The degree of the laminarization

and enhancement of turbulence on corresponding sides increases with rotation number. These

results agree with experimental results of MacFarlane et al. (1998) and computational results

of Kristoffersen and Andersson (1993) for a rotating channel. Figure 5.9 shows the average

friction factor f = 8(<uτ >
ub

)2 over the duct perimeter which is normalized by the friction factor

for a stationary duct of the same Reynolds number, which is given by Jones’ correlation (Jones,

1976)

1/
√

f0 = 2log (1.125Re
√

f0) − 0.8. (5.29)

The present LES results (a Re = 8100, Ro = 0.2 case is also included) are compared with the

curve which was obtained by matching the experimental data of Mårtensson et al. (2002).

It can be seen that the friction factor increases rapidly with rotation number. By comparing

the local friction velocities along the duct periphery under different rotation numbers, which

is shown in Fig. 5.10, it can be seen that the increase of friction factor mainly takes place on

the unstable wall and the side wall.
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Figure 5.4 Contours of the streamwise mean velocity together with the

secondary flow vector field

Figures 5.11 to 5.13 show the root mean square (r.m.s.) of velocity fluctuations along the

wall bisector z/Dh = 0.5. These fluctuations are normalized by the global wall friction velocity.

A very interesting phenomenon is, unlike in a rotating channel in which cross-stream fluc-

tuations always show maxima near the unstable wall (see Kristoffersen and Andersson, 1993;

Tafti and Vanka, 1991), in a rotating duct cross-stream fluctuations are higher at the stable

wall when rotation number is small. This difference can be attributed to the contribution of

the secondary flows to the turbulent production in rotating duct, which are absent in a rotating

channel. The interpretation of the results in Figs. 5.11 to 5.13 can be facilitated by examining

the production terms in the Reynolds stress transport equations:

Mij = Pij + Gij , (5.30)

Pij = −%(〈ui
′uk

′〉∂Uj

∂xk
+ 〈uj

′uk
′〉∂Ui

∂xk
), (5.31)

Gij = 2%Ro(〈ui
′ul

′〉εjl3 + 〈uj
′ul

′〉εil3), (5.32)

where Pij is caused by mean shear and Gij by rotation. 〈·〉 represents time averaging. The

dominant components of Pij and Gij are shown in Table 5.2.

M11 and urms distributions at low and high rotation numbers are shown in Fig. 5.14. Since
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Figure 5.5 Streamwise mean velocity along wall bisector z/Dh = 0.5,

Ro = 0.0133 and Ro = 0.0266

Table 5.2 Turbulent production terms

ij 11 22 33 12

Pij −2%(〈u′v′〉∂U
∂y + 〈u′w′〉∂U

∂z ) −2%(〈v′2〉∂V
∂y + 〈v′w′〉∂V

∂z ) −2%〈w′2〉∂W
∂z −%〈v′2〉∂U

∂y

Gij 4%Ro〈u′v′〉 −4%Ro〈u′v′〉 0 2%Ro(〈v′2〉 − 〈u′2〉)

P11 À G11 in the current rotation number range, M11 is almost the same as P11. Because

〈u′v′〉 is of opposite sign to ∂U
∂y and 〈u′w′〉 is of opposite sign to ∂U

∂z , P11 is positive. Under low

rotation rate, the contribution of ∂U
∂z to P11, which causes M11 to attain local maximum near

the horizontal wall, is of the same order as the contribution of ∂U
∂y . When the rotation number

is high, due to the Taylor-Proudman effect, the contribution of ∂U
∂z to P11 is negligible. Another

feature of the M11 distributions is that under low rotation number, there are peak values near

both stable and unstable walls while under high rotation number the peak value only appears

near the unstable wall. This is because of the vanishing 〈u′v′〉 at the negative ∂U
∂y part under

high rotation number. As for 〈u′v′〉, when the rotation rate is low, P12 dominates in M12. At

high rotation numbers (such as that in case 4), G12 is of the same order of magnitude as P12.

Furthermore, in the positive ∂U
∂y part, G12 is of the same sign as P12 while in the negative ∂U

∂y
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Figure 5.6 Streamwise mean velocity along wall bisector z/Dh = 0.5,

Ro = 0.088 and Ro = 0.176

part, G12 is of opposite sign to P12 which causes M12 to be small and 〈u′v′〉 to vanish. These

effects are shown in Fig. 5.15. 〈v′2〉 is affected by M22 as Fig. 5.16 shows. At low rotation

number, the secondary flow induced P22 dominates in M22 and results in a higher vrms near

the stable wall. At high rotation number, G22 dominates in M22 and as a result, vrms shows

only one peak near the unstable wall.

5.3.2 The Heated Duct

The domain for the heated rotating duct cases are the same as that of the isothermal

cases which is shown in Fig. 5.1. Heat is applied to all four walls of the test section. The

constant wall heat flux condition is employed. As mentioned above, rotation reduces/increases

streamwise velocity at the stable/unstable wall which results in relatively higher/lower local

temperature at the stable/unstable wall. Density differences arise as a consequence of this local

temperature difference. The buoyancy acts in the aiding/opposing direction to the mean flow

at the unstable/stable side, respectively, if the Grashof number is positive (outward flow) and

the situation is reversed when the Grashof number is negative (inward flow). In comparison

with the buoyancy-free flow, the opposing buoyancy at the stable side in the outward flow



www.manaraa.com

111

corner bisector

U
+

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

4

8

12

16

20

DNS (Gavrilakis)
LES, 240X40X40 grids
LES, 240X60X60 grids

Case2
Ro=0.0133

corner bisector

U
+

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

4

8

12

16

20

DNS (Gavrilakis)
LES, 240X40X40 grids
LES, 240X60X60 grids

Case2
Ro=0.0266

Figure 5.7 Streamwise mean velocity along corner bisector

causes the streamwise velocity there to decrease and eventually the flow separates under the

current Grashof numbers. As a result, a significant temperature rise appears at the stable side

near the inlet of the heated section (x/Dh = 2). This reduces the Nusselt number on the stable

wall. However, farther downstream the temperature at the stable wall decreases somewhat.

This is due to the enhancement of the near-wall turbulent kinetic energy and the turbulent

transport near the stable wall, which causes a slight increase in Nusselt number (see Figs.

5.17, 5.21, 5.22 and 5.24). For the inward flow, the aiding buoyancy increases the streamwise

velocity near the stable side and as a result the temperature/Nusselt number at the stable side

is much lower/higher than that of the buoyancy-free flow at the same streamwise location.

These effects can be seen from Figs. 5.17 and 5.18 which present mean streamwise velocity

and temperature profiles at the wall bisector z/Dh = 0.5 for forced and mixed convection cases.

The cross section distributions of the mean velocity (contours of U+ and vectors of sec-

ondary flow) and temperature θ at station x/Dh = 10 are shown in Fig. 5.19. Here the

nondimensional temperature is defined as θ = T−〈Tw〉
〈Tτ 〉

where 〈Tw〉 is the average wall temper-

ature and 〈Tτ 〉 is the average friction temperature. It can be seen that compared with the

buoyancy-free flow, the secondary flow patterns become more complex because of buoyancy.

In the outward mixed flows, the small rotating cell at the unstable side is suppressed and the
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Figure 5.8 Streamwise mean velocity along wall bisector z/Dh = 0.5

large rotating cell near the stable side is also weakened in strength and moved toward the un-

stable side. In the inward mixed flows, the small rotating cell does not change much compared

with forced flow and the large rotating cell is strengthened. At high Grashof number (case 9),

a new cell appears near the center of the stable wall in the inward flow. These secondary flow

pattern changes have significant impacts on the streamwise velocity and temperature distri-

butions which can be most obviously observed in the inward flows where streamwise velocity

isolines are severely distorted from the original Taylor-Proundman regime.

These phenomena can be explained by the force balance mentioned above. As Fig. 5.19

shows (where P means pressure gradient, C means Coriolis force), in the outward flows, the flow

separation near the stable side causes the Coriolis force to reverse direction which promotes a

pressure gradient toward the unstable wall. This adverse pressure gradient does not favor the

development of Ekman layer at the side wall. As a result, the impingement of fluid from Ekman

layer toward the stable wall is impaired. The rotating cell at the corner is then weakened and

shifted toward the unstable side. In the inward flows, on the contrary, the aiding buoyancy at

the stable side accelerates the local streamwise velocity and results in increased Coriolis force

and pressure gradient. This enhanced favorable pressure gradient helps the development of the
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Figure 5.9 Average friction factor over duct perimeter

Ekman layer as well as the flow impingement toward the stable wall. Thus, the corner vortex

is strengthened.

The variations of the secondary flow pattern affect the temperature and Nusselt number

distributions at the stable wall as follows. The Stewartson layer transports hot fluid from the

stable wall to the duct interior and the Ekman layer transports cold fluid from the duct center

to the stable wall corner. Thus in the buoyancy-free flows, the temperature peak appears at

the center of stable wall and the Nusselt number maximum shows up at the corner. In the

outward flows, the Ekman layer is hindered as analyzed above; therefore, the temperature

peak on the stable wall shifts to the corner and the Nusselt number maximum shows up near

the stable wall-bisector. In the inward flows, the Ekman layer is strengthened. As a result,

the impingement of cold fluid toward the stable wall corner is also strengthened; therefore,

the temperature peak on the stable wall is located near the wall-bisector. In the case of

Grashof number −2.2 × 106, a new rotating cell appeared near the stable wall center and it

also transports relatively cold fluid toward the stable wall, which is responsible for the shift of

the local stable wall temperature maximum from the wall bisector toward the corner.

The local temperature and Nusselt number distributions along the duct perimeter are
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Figure 5.10 Local friction factor along duct perimeter

shown in Fig. 5.20 and Fig. 5.25, respectively, in which the phenomena mentioned above can

be observed.

The variations of the secondary flow pattern also influence the mean shear stress distri-

bution on the stable wall. Since the Ekman layer transports high speed fluid from the duct

interior to the stable wall and the Stewartson layer transports low speed fluid from the stable

side to the duct interior, in the buoyancy-free flows, the mean shear stress on the stable wall

obtains its peak value at the corner. In the inward flows, the strengthened secondary flow

results in high temperature near the central stable wall as mentioned above. And the aiding

buoyancy accelerates the hot fluid; thus, a high shear stress appears near the central stable

wall in the inward flows.

In summary, rotation causes the streamwise velocity to increase/decrease near the unsta-

ble/stable side. The different balances between Coriolis force, pressure gradient and viscous

force give rise to persistent secondary flow patterns. Under heating the streamwise velocity

differences cause temperature differences (and as a result, density differences) across the duct.

The buoyancy effects due to these density differences change streamwise velocity distributions

and through the force balance change the secondary flow patterns. The modified velocity field
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Figure 5.11 Turbulent intensities of velocity along wall bisector

z/Dh = 0.5, Ro = 0.0133

changes the temperature field through convection and the modified temperature field in turn

affects velocity field through buoyancy force. At the same time, the velocity and temperature

fluctuations are also influenced by buoyancy.

The turbulent kinetic energy k = 1
2〈u′

iu
′
i〉 distributions and the production term of the

Reynolds averaged T.K.E. (turbulent kinetic energy) equation at the wall bisector z/Dh = 0.5

are shown in Fig. 5.21. The production term M is composed of two parts: P , the production

due to mean shear and G, production due to buoyancy. These terms are given in the following

equation:

M = P + G, (5.33)

P = −%〈ui
′uk

′〉∂Ui

∂xk
, (5.34)

G =
Gr

εRer
2 〈%

′u′〉. (5.35)

Coriolis force makes no contribution to the turbulent energy production term. The production

term P also can be divided into two parts:

P = Paccel + Pshear, (5.36)

Paccel = −%(〈u′2〉∂U

∂x
+ 〈v′2〉∂V

∂y
+ 〈w′2〉∂W

∂z
). (5.37)
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Figure 5.12 Turbulent intensities of velocity along wall bisector

z/Dh = 0.5, Ro = 0.0266

The first part is the T.K.E. absorption rate caused by mean flow acceleration and the second

part is the terms determined by shear stress. The T.K.E. absorption rate is always negative

when the flow is under heating. The reason is that the density of the fluid keeps decreasing

under heating, so the velocity of the flow keeps increasing so that a constant mass flow rate

can be maintained. In the present study, Pshear dominates the production term. The produc-

tion term caused by buoyancy, though only about 10% of the total production currently, can

dominate when the buoyancy parameter Gr
εRer

2 becomes larger. In the outward flows, Pshear

increases near the stable side because of the strong shear gradient caused by the flow separa-

tion. In contrast, in the inward flow, Pshear decreases slightly near the unstable side because

of the reduced shear gradient.

The temperature fluctuation intensities Trms and their production term along the wall

bisector z/Dh = 0.5 are shown in Fig. 5.22. The production term Mt is given by

Mt = −%〈ui
′T ′〉 ∂T

∂xi
. (5.38)

Unlike in the thermally fully-developed flows, the contribution from the streamwise turbulent

heat flux and temperature gradient, −%〈u′T ′〉∂T
∂x together with the contribution from the ver-

tical components −%〈v′T ′〉∂T
∂y dominates the production term in the present developing heat



www.manaraa.com

117

y/Dh

ve
lo

ci
ty

flu
ct

u
a

tio
n
s

0 0.25 0.5 0.75 1
-1

0

1

2

3

urms

vrms

wrms

<u’v’>

Case 3
Ro=0.088

y/Dh

ve
lo

ci
ty

flu
ct

u
a

tio
n
s

0 0.25 0.5 0.75 1
-1

0

1

2

3

urms

vrms

wrms

<u’v’>

Case 4
Ro=0.176

Figure 5.13 Turbulent intensities of velocity along wall bisector

z/Dh = 0.5, Ro = 0.088 and Ro = 0.176

transfer situations. It can be seen that the temperature fluctuations, like turbulent kinetic

energy, are suppressed near the stable side in the forced flow. This is due to the distributions

of the turbulent heat flux components, which are also suppressed near the stable side. In the

outward mixed flows, the temperature fluctuations are markedly higher than that of forced

flow near the stable side which is due to the enhanced streamwise and vertical components

of turbulent heat flux as a result of the augmented mixing. This helps to compensate for the

effect of mean flow separation which reduces the Nusselt number near the stable wall. In the

inward mixed flows, the temperature fluctuations increase near the stable side which can be

attributed to the strengthening of the corner rotating cell. To aid in understanding the

relation of secondary flows to the temperature fluctuations, the distributions of temperature

fluctuation and the vertical component of turbulent heat flux −〈v′T ′〉 together with the sec-

ondary flow vectors in the cross section are shown in Fig. 5.23. These results were obtained

at the location x/Dh = 10. A very strong relation between secondary flows and the vertical

component of turbulent heat flux can be observed. A negative −〈v′T ′〉 zone appears near the

unstable wall and a positive −〈v′T ′〉 zone appears near the stable wall. The size of the negative

−〈v′T ′〉 zone is controlled by the size of the small rotating cell near the unstable side. In the
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Figure 5.14 Contours of M11 (left) and urms (right)

outward mixed flow, the small rotating cell is suppressed which results in the reduction of this

zone. The positive −〈v′T ′〉 zone is related to the large rotating cell near the stable side. In the

outward mixed flow, the large rotating cell and the positive −〈v′T ′〉 zone are both displaced

towards the unstable side. In the inward mixed flow, the strengthened stable side rotating

cell causes an intensified positive −〈v′T ′〉 zone, which is responsible for the augmentation of

temperature fluctuations near the stable side compared with the forced flow.

The streamwise distribution of the wall-averaged Nusselt number ratio Nux/Nus is shown

in Fig. 5.24. The Reynolds number and the rotation number are fixed at Re = 5000 and

Ro = 0.176, respectively. Nux is the local peripherally averaged Nusselt number. The reference

Nusselt number Nus is the fully developed Nusselt number for stationary straight pipe flow

correlated by Dittus-Boelter/McAdams as Nus = 0.023Re0.8Pr0.4. The triangles are the

experimental data of Han and Zhang (1992). Compared with buoyancy-free flow, the heat

transfer coefficient is enhanced at the unstable wall in the outward mixed flows as well as

the stable wall in the inward mixed flows due to the increased mean shear, which is caused

by the aiding buoyancy. The opposing buoyancy near the stable side in the outward mixed

flows causes the flow to separate. The slow speed flow close to the stable wall reduces the

Nusselt number at first; however, as the flow goes downstream, the situation is improved
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Figure 5.15 Contours of M12 (left) and 〈u′v′〉 (right)

because of the enhanced turbulent kinetic energy near the stable side. As can be observed, the

stable wall Nusselt number of the Gr = 2.2 × 106 case surpasses the Gr = 1.1 × 106 case at

x/Dh = 1.4 and then surpasses the forced flow at x/Dh = 8. The Nusselt numbers at the side

wall of the outward mixed flows are lower than that of the forced flow. The four-wall averaged

Nusselt number of the outward mixed flow is lower than that of the forced flow at first but

eventually becomes higher than the forced flow. For the inward mixed flows, the unstable wall

Nusselt number is less than that of the forced flow because the opposing buoyancy retards the

streamwise mean velocity near the unstable side. However, in the current developing situation,

there is no obvious differences in the side wall and four-wall averaged Nusselt number between

the inward mixed and forced flow.

The local Nusselt number ratio Nu/Nus and mean shear stress τ/τa distribution along

the duct perimeter at x/Dh = 10 are shown in Fig. 5.25. Here τ is obtained by calculating

the value of µU
δ of the nearest point from the wall (δ is the distance from the wall) and τa

is the peripherally averaged shear stress. Note that the negative shear stress at the side wall

near y/Dh = 1 and the stable wall in the outward mixed flows are due to the mean streamwise

velocity reversal. A strong correlation between the two distributions can be found, especially

near the unstable wall and side wall. At the stable wall, turbulent transport is also important
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Figure 5.16 Contours of M22 (left) and vrms (right)

in addition to the mean shear for the outward mixed flows as mentioned.

Attention is now turned to the effects of rotation number and Reynolds number on heat

transfer. As shown in Fig. 5.26, at the same Reynolds number and Grashof number, the

differences between the heat transfer coefficients on the unstable and stable walls increase with

increasing rotation number; at the same rotation number and Grashof number, the Reynolds

number shows little impact on local heat transfer coefficients, which agrees well with the

physical meaning of rotation number (which is the measurement of the relative strength of

Coriolis force to inertia force) and experimental results (Han and Zhang, 1992).

5.4 Summary and Conclusions

Turbulent mixed convection heat transfer in a variable-property thermally developing ro-

tating square duct was investigated using large eddy simulation. The effects of Coriolis force

and rotational buoyancy on the mean flow structure, turbulent fluctuation intensities and

heat transfer behavior were studied. Fairly satisfactory agreement between prediction and

experimental results has been achieved. The discrepancy may be due to the uncertainty of

measurements in experiments (up to 20-25% according to Han and Zhang, 1992) and the

boundary condition differences between experiments and simulations. Based on the analysis
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Figure 5.17 Streamwise mean velocity and temperature along wall bisector

z/Dh = 0.5, case 5, 6 and 7

of the present LES results, the following conclusions can be drawn.

1). In the fully developed isothermal rotating duct flows, the cross-stream fluctuations

(〈v′2〉 and 〈w′2〉) obtain their peak values near the stable side rather than near the unstable

side when the rotation number is small. This is due to the contribution of secondary flows on

the turbulent production.

2). Buoyancy changes the secondary flow pattern through a delicate force balance. In the

outward flows, the opposing buoyancy retards or even reverses the flow near the stable side.

This results in a reduced or even reversed Coriolis force and in turn, a reduced favorable or

even adverse pressure gradient which does not favor the development of the Ekman layer at the

side wall and, as a result, weakens the stable wall corner rotating cell. In the inward flows, the

aiding buoyancy accelerates fluids close to the stable wall giving rise to an enhanced favorable

pressure gradient which strengthens the Ekman layer as well as the stable wall corner rotating

cell.

3). Buoyancy influences the temperature (and as a result, Nusselt number) and mean shear

stress distribution on the stable wall not only by changing the streamwise velocity directly,

but also by modifying secondary flow patterns. Since the Ekman layer transports cold and
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Figure 5.18 Streamwise mean velocity and temperature along wall bisector

z/Dh = 0.5, case 8 and 9

high speed fluid from the duct interior to the stable wall and the Stewartson layer transports

hot and low speed fluid from the stable side to the duct interior, in the buoyancy-free flows,

the Nusselt number and mean shear stress on the stable wall obtains their peak values at the

corner, while the temperature maximum appears at the wall-bisector. In the outward flows, the

weakened secondary flow results in high temperature near the stable side corner and a Nusselt

number maximum at the wall-bisector. In the inward flows, the strengthened secondary flow

results in high temperature near the central stable wall. The aiding buoyancy accelerates the

hot fluid; thus, a high shear stress appears near the stable wall-bisector in the inward flows.

This explains the discrepancy between the Nusselt number and shear stress distributions at

the stable wall.

4). Buoyancy affects turbulent kinetic energy and temperature fluctuation distributions

through its contributions to the relevant production terms. Buoyancy influences the production

of turbulent kinetic energy in two ways: by modifying the mean shear and by acting directly

as a buoyancy production term. The latter can dominate if the buoyancy parameter Gr
εRe2

r

becomes large. It has been found that the secondary flow pattern has a strong relationship

with the vertical heat flux −〈v′T ′〉, which is vital in the production term of the temperature

fluctuations. Buoyancy thus impacts the temperature fluctuation indirectly by altering the

secondary flow pattern.

5). There is a strong correlation between the peripheral distributions of local Nusselt num-
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ber and mean shear stress at the unstable wall and the side wall. The discrepancy between the

Nusselt number and shear stress distributions at the stable wall is explained in conclusion 3.
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Figure 5.19 Mean velocity (up) and temperature (below) at x/Dh = 10

and schematic of the mechanism of the variations of secondary

flows
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Figure 5.21 Turbulent kinetic energy (left) and its production term (right)

along wall bisector z/Dh = 0.5
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Figure 5.22 Temperature fluctuation intensity (left) and its production

term (right) along wall bisector z/Dh = 0.5
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Figure 5.23 Temperature fluctuation intensity (up) and vertical turbulent

heat flux (below) at x/Dh = 10
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duct perimeter at x/Dh = 10
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CHAPTER 6. THE VELOCITY FIELD AND INSTABILITY OF

ROTATING DUCT FLOW

Abstract

The velocity field and the instability of the flow in a rotating square duct were investigated.

The velocity profiles were obtained for Ekman numbers less than 1/16 by combining a linear

Stewartson layer solution, a non-linear Ekman layer solution and a local similarity assumption.

The transition of the secondary-flow pattern from one pair of vortices to two pairs of vortices

was studied with the conventional linearized equations for small disturbances. The resultant

sixth order equation was solved numerically. The onset of the instability of the Ekman layer was

also studied and found to be relevant to the class A and class B waves. The present theory was

compared with the experimental results of Smirnov and Yurkin (1983). The critical rotation

numbers for marginal stability of both the Stewartson layer and the Ekman layer were found

in good agreement with measurements.

The experiments of Smirnov and Yurkin (1983) also revealed a boundary in the parameter

space corresponding to the sudden change of the slopes of the drag curves, which was found

at least partially related to the wavy instability of the Stewartson layer. A quasi-geostrophic

method was used to include the effects of Ekman friction in the instability formula. The critical

rotation numbers obtained were in qualitative agreement with experimental measurements.

Another phenomenon the experiments discovered was the pulsation of the four-vortex pattern

as a certain critical Reynolds number was exceeded. This phenomenon has not yet been

explained by the present analysis.
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6.1 Introduction

Experiments by Smirnov and Yurkin (1983) and numerical simulations of Kheshgi and

Scriven (1985) revealed the existance of two different secondary flow patterns and the transition

from one to another in a rotating square duct. For a duct rotating about an axis perpendicular

to one of its walls, for example, the situation shown in Fig. 6.1, the Coriolis force component in

the negative y direction is balanced by pressure gradient in the central duct region. Close to the

top and bottom walls, this Coriolis force component decreases with velocity so that the pressure

gradient drives the fluid to the stable wall of the duct (y/D = 1) so that it can be balanced

by both the Coriolis force and the viscous force. Due to these mechanisms, a double-vortex

secondary flow pattern is formed, as sketched in Fig. 6.1. However, a four-vortex pattern can

also arise under certain conditions. A transition process between these two patterns is shown

Ω
, w
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, ux
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Flo
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D

Stablewall
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wall

D

Figure 6.1 Flow in a rotating square duct

in Fig. 6.2. These results were obtained by using a low Mach number preconditioned finite

volume code with a lower-upper symmetrical Gauss-Seidel scheme (Qin and Pletcher, 2006).

This code was designed for large eddy simulations (LES) of turbulent flows but could also be

used for laminar flow simulations if the subgrid-scale model was disabled. In the following
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text the results obtained this way will be denoted as “LES results” without causing confusion.

Four different combinations of Reynolds number and rotation number were simulated. The

Re = 250, Ro = 0.4 Re = 320, Ro = 0.3125

Re = 333.333, Ro = 0.3 Re = 500, Ro = 0.2

Figure 6.2 Transition between double-vortex and four-vortex patterns

definitions of these numbers will be given shortly. It may be noticed that the products of

Reynolds and rotation number are the same, namely 100, for all these four cases. It can be

observed that as rotation number reduces to 0.3125, close to the the high pressure wall at y = 0

the fluid begins to meander around the center line z = 0.5D which suggests the onset of flow

instability in the Stewartson layer (the boundary layers at the vertical walls). As the rotation

number decreases further, the four-vortex pattern appears. This instability boundary was

denoted as boundary “S1” in Fig. 6.3, which summarized the experimental results of Smirnov

and Yurkin (1983). Experiments of Smirnov and Yurkin (1983) indicated that this four-vortex

pattern was steady for all rotation numbers as Re < 650. Above this critical Reynolds number

this pair of vortices began to pulsate and eventually broke up. The instability boundary “S2”

in Fig. 6.3 shows when such transitions happen.

The visualization of the experiments by Smirnov and Yurkin (1983) showed that below

the hatched region “S3” in Fig. 6.3 there were no oscillations in the positive absolute vorticity



www.manaraa.com

134

area (that is, the negative du/dy area. See Fig. 6.4). Also, the experiments of Döbner (1959)

demonstrated another critical line existing in the parameter space (line “S4” in Fig. 6.3) which

corresponds to the sudden change of the slopes of the drag curves. And this critical line had

been reasonably associated with the transition to turbulence of the Ekman layer (the boundary

layers at the horizontal walls) by Smirnov and Yurkin (1983) since the drag in a rotating duct

is mainly determined by the shear stress in the Ekman layer (Smirnov, 1978).
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Figure 6.3 Critical lines from experiments by Smirnov and Yurkin (1983)

To facilitate a better understanding of the various instabilities mentioned above, a linear

stability analysis was carried out. This required the velocity field inside the rotating duct to
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be known in advance. Smirnov (1978) solved the linearized equations of motion by neglecting

all convection terms and reached an asymptotic solution. The convection of the secondary

flow, however, should not be ignored since it has a major effect on the streamwise velocity

distributions as shown in Fig. 6.4, which shows u velocity profiles at several different rotation

numbers. The maximum u velocity is displaced by the secondary flow toward the unstable wall

(y = 0) and an almost constant slope region in u profiles can be identified which occupies the

0

0.2

0.4

0.6

0.8

1

z/D

0

0.5

1

1.5

2

u/ub0.2
0.4

0.6
0.8

1

y/D

X Y

Z

Re = 250, Ro = 0.4

y/D

u
/u

b

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Re = 125, Ro = 0.8

y/D

u
/u

b

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Re = 250, Ro = 0.4

y/D

u
/u

b

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Re = 500, Ro = 0.2

y/D

u
/u

b

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Re = 1000, Ro = 0.1

z/D = 0.5

Figure 6.4 Streamwise velocity

majority of the duct. As a result, in order to predict the streamwise velocity accurately, the

profile as well as magnitude of the secondary flow needs to be determined, which will be done
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in Sec. 6.2 by combining a linear Stewartson layer solution, a non-linear Ekman layer solution

and a local similarity assumption. With the velocity field known, the onset of the instabilities

mentioned above were predicted with linear theory for disturbances of small magnitude in Sec.

6.3. Hart (1971) as well as Lezius and Johnston (1976) carried out analysis for “roll-cell”

instabilities in rotating laminar (Hart, 1971; Lezius and Johnston, 1976) and turbulent (Lezius

and Johnston, 1976) channel flows. A similar process was employed in the present research

for the S1 instability boundary although the situation was complicated by the presence of

secondary flow. The resultant ordinary differential eigenvalue problem was solved numerically

by a matrix deduction method with a Laguerre rootfinder. The S3 instability boundary was

studied by considering the non-linear Ekman layer subjected to banded disturbances which

propagated at a constant angle with the base flow. In this case, the base flow changes in

the principal component direction of the Coriolis force and is more complex than the usual

linear Ekman or von Kármán boundary layers. Also in this section the wavy instability of

the Stewartson layer was explored to explain the S4 drag change boundary since the unstable

Stewartson layer also contributes a significant part of the total drag. Bulk rather than local

velocity field was considered by assuming the flow to be quasi-geostrophic. The method of Niino

and Misawa (1984) were used and the theoretical results qualitatively agree with experimental

measurements. The concluding remarks are given in Sec. 6.4.

6.2 Velocity Field in a Rotating Square Duct

6.2.1 Governing Equations and Flow Regions

The dimensionless Navier-Stokes equations for incompressible viscous flow in a coordinate

system rotating with the duct (see Fig. 6.1) are

∇ · q = 0, (6.1)

∂q

∂t
+ q · ∇q + 2Rok̂ × q = −∇p +

1

Re
∇2q, (6.2)

where q is the velocity vector. The reference length, velocity and time are duct side width

D, bulk velocity ub and D/ub, respectively. The Reynolds number and rotation number are
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defined as Re = ubD/ν and Ro = ΩD/ub. The Ekman number is defined as E = 1/(Re ·

Ro). Obviously, the flow is completely controled by any two of these three non-dimensional

parameters. By taking the curl of the equation of motion, we obtain the vorticity equation:

∂B

∂t
+ q · ∇B − B · ∇q − 2Ro

∂q

∂z
=

1

Re
∇2B, (6.3)

where B = ∇× q.

For a steady, fully-developed flow, the velocity vector assumes the form

q = u(y, z)̂i + ∇×
[
ϕ(y, z)̂i

]
, (6.4)

where ϕ is the stream function. The x−momentum and x−vorticity equations are

∂ϕ

∂z

∂u

∂y
− ∂ϕ

∂y

∂u

∂z
− 2Ro

∂ϕ

∂z
= −∂p

∂x
+

1

Re
∇2u, (6.5)

∂ϕ

∂z

∂∇2ϕ

∂y
− ∂ϕ

∂y

∂∇2ϕ

∂z
+ 2Ro

∂u

∂z
=

1

Re
∇4ϕ. (6.6)

As mentioned above, the duct cross section can be divided into three regions based on the

flow characteristics in each region (see Fig. 6.5, in which the secondary flow is shown in the

upper half of the duct and the u velocity distributions along the y and z directions are shown

in the lower half). The boundary layers close the horizontal walls are Ekman layers, which

have a characteristic thickness of E1/2. Adjacent to the vertical walls are Stewartson layers

which have a double-layer structure (Stewartson, 1957). And the characteristic thicknesses are

E1/3 and E1/4 for the inner and outer layers, respectively. Outside of these boundary layers

is the central core, in which viscosity is usually negligible. The fluid from the central core

flows to the Ekman layer through the unstable wall Stewartson layer, and then comes back

to the central core through the stable wall Stewartson layer. In derivations to follow we will

use subscripts 1, 2, 3 to denote the central core, the Ekman layers and the Stewartson layers,

respectively. In most applications of practical interest, the Ekman numbers are usually much

less than unity. Therefore the Stewartson layer is thicker than the Ekman layer. If E1/4 > 1/2,

that is E > 1/16, the two Stewartson layers merge and the central core disappears. For this

situation the perturbed Poisson equation method as adopted by Hart (1971) for flow through

slowly rotating channels may be more appropriate. We will restrict our study in the range

E < 1/16 since all instability boundaries fall in this region.
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6.2.2 The Central Core

In the central core, as Ro À 1 and E ¿ 1, from Eqs. (6.2) and (6.3), we have

q1 =
1

2Ro
k̂ ×∇p, (6.7)

∂q1

∂z
= 0. (6.8)

Equation (6.8) is simply the Taylor-Proudman theorem (Greenspan, 1968). For fully-developed

flow, ∂p/∂x is a constant everywhere inside the flow; also because of symmetry, w(z = 1/2) = 0.

As a result, we have

ϕ1 = g1E
1

2

(
z − 1

2

)
, (6.9)

v1 = g1E
1

2 , (6.10)

w1 = 0, (6.11)

∂p

∂x
= 2Rog1E

1

2 , (6.12)

where g1 is a constant. The scaling E
1

2 is appropriate due to the mass balance between the

central core and the Ekman layer which will be clear shortly.

For the central core at moderate rotation numbers, Ro ∼ O(1), the convection term vdu/dy

(the partial derivative ∂u/∂y can be replaced by an ordinary derivative du/dy in the central
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core) in the x−momentum equation is of the same order as the Coriolis term and cannot be

neglected. As mentioned before, there exists a linear slope region (du1/dy =constant) in the

u profile which occupies most the central core. Hence we have

ϕ1 = g1E
1

2

(
z − 1

2

)
, (6.13)

v1 = g1E
1

2 , (6.14)

w1 = 0, (6.15)

∂p

∂x
=

(
2Ro − du1

dy

)
g1E

1

2 . (6.16)

6.2.3 The Ekman Layer

In the Ekman layers adjacent to the central core, if Ro À 1 and E ¿ 1, the convection

terms in Eqs. (6.5) and (6.6) can be ignored and ∂/∂z À ∂/∂y. Equations (6.5) and (6.6)

become

−2Ro
∂ϕ2

∂z
=

1

Re

∂2u2

∂z2
, (6.17)

2Ro
∂u2

∂z
=

1

Re

∂4ϕ2

∂z4
, (6.18)

which can be reduced to

E2 ∂6ϕ2

∂z6
+ 4

∂2ϕ2

∂z2
= 0. (6.19)

By substituting η = E−az into the above equation, we have a = 1/2. Thus, the Ekman layer

is of a characteristic thickness E
1

2 . Also the stream function ϕ must be of the same order E
1

2

since u ∼ 1. By using η = z/E
1

2 and Φ = ϕ/E
1

2 , Eq.(6.19) becomes

∂6Φ2

∂η6
+ 4

∂2Φ2

∂η2
= 0, (6.20)

with boundary conditions

η = 0, u2 = Φ2 =
∂Φ2

∂η
= 0, (6.21)

η → ∞, u2 → u1, Φ2 → Φ1(z = 0),
∂Φ2

∂η
→ v1. (6.22)

The second condition of Eq. (6.22) comes from the mass balance of the secondary flow:

∫ 1

2

0
vdz = 0. (6.23)
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and the fact that as E ¿ 1, the Ekman layer is very thin. Also from this condition it can

be concluded that the stream function in the central core, ϕ1, like ϕ2, is of order E
1

2 . This

justified the scaling of ϕ1 used above. Notice only the Ekman layer at z = 0 is considered since

the layer at z = 1 can be solved exactly the same way. The solution is

u2 = u1 [1 − exp(−η)cosη] , (6.24)

Φ2 = Φ1

[
1 −

√
2exp(−η)cos(η − π

4
)
]
, (6.25)

u1 = −g1 ∼ 1. (6.26)

Equation (6.26) is the compatibility condition on the fluid velocities in the central core when

linear theory applies, from which we can see that the fluid in the central core moves axially as

a plug flow when it reaches the rapid rotating limit Ro À 1. According to Greenspan (1968),

the velocity at a surface, say Σ, induced by Ekman pumping is

n̂ · q̃2 =
1

2
E

1

2 n̂ · ∇ ×






n̂ × q1 +

n̂ · k̂∣∣∣n̂ · k̂
∣∣∣
q1




∣∣∣n̂ · k̂
∣∣∣
− 1

2





Σ

, (6.27)

where n̂ is the outward unit vector normal to the surface. Under the current settings n̂ = k̂

at the top surface and n̂ = −k̂ at the bottom surface. To balance this induced flow, we have

w2 = −w̃2 =
n̂ · k̂∣∣∣n̂ · k̂

∣∣∣
E

1

2

2

du1

dy
. (6.28)

Since in the rapid rotating limit du1/dy = 0, there is no normal flow inside the Ekman layer,

except close to the vertical walls.

For the Ekman layer at moderate rotation numbers, the convection term v∂u/∂y as well

as the pressure gradient in x−momentum equation cannot be ignored. By using scalings

Φ = ϕ/E
1

2 , η = z/E
1

2 and ξ = 2Roy, Eq. (6.6) becomes

∂(Φ2 − Φ1)

∂η
(
∂u2

∂ξ
− 1) =

1

2

∂2u2

∂η2
, (6.29)

∂u2

∂η
=

1

2

∂4(Φ2 − Φ1)

∂η4
. (6.30)

The boundary conditions are still Eqs. (6.21) and (6.22). One method to solve this equation is

to assume (∂u2/∂y) |y=y0
= (du1/dy) |y=y0

throughout the whole Ekman layer at any specific
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location y = y0. If (du1/dy) |y=y0
< 2Ro, which is the case in most part of the duct, we have

Φ2 = Φ1 + exp(−ση)
[g1

2
cos(ση) + (

g1

2
− v1

σ
)sin(ση)

]
, (6.31)

u2 = u1 + σ3exp(−ση)
[
(g1 −

v1

σ
)cos(ση) − v1

σ
sin(ση)

]
, (6.32)

u1 = −σ3(g1 −
v1

σ
), (6.33)

where σ = (1 − du1/dξ)1/4. Equation (6.33) gives a compatibility condition on the fluid

velocities in the central core for moderate rotation numbers. Using Eq. (6.33), the velocity

distributions in the Ekman layer can be further simplified and expressed as

u2 = u1

[
1 − cos(σE− 1

2 z)exp(−σE− 1

2 z)
]
− v1σ

2sin(σE− 1

2 z)exp(−σE− 1

2 z),

(6.34)

v2 = v1

[
1 − cos(σE− 1

2 z)exp(−σE− 1

2 z)
]

+
u1

σ2
sin(σE− 1

2 z)exp(−σE− 1

2 z).

(6.35)

If (du1/dy) |y=y0
> 2Ro, the result is

Φ2 = Φ1

[
1 − exp(−

√
2ση)

]
, (6.36)

u2 = u1

[
1 − exp(−

√
2ση)

]
, (6.37)

u1 = −
√

2

2
σ3Φ1, (6.38)

where σ = (du1/dξ − 1)1/4.

From the above results we can see the thickness of the non-linear Ekman layer (∼ σ−1E1/2)

is thinner than that of the linear one (∼ E1/2). Also there exists asymmetry inside the Ekman

layer: the velocity profile changes with y coordinate. This feature has been reflected in Fig.

6.5. Since the Stewartson layer is much thicker than the Ekman layer, these solutions still

serve as good approximations as the Ekman layer enters the Stewartson layer, that is, at the

corner of the duct. We will see later that this method is good enough to predict the u velocity

profile; however, it may not be optimum for calculating the magnitude of secondary flow. Also

this method has a singular point at σ = 0. We will use a local similarity method to improve

the prediction of the Ekman layer.
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For this non-linear Ekman layer, following the method of Greenspan (1968), the induced

normal flow at the wall can be obtained, which is

w2 =
n̂ · k̂∣∣∣n̂ · k̂

∣∣∣
E

1

2

2σ3

du1

dy
, if du1/dy < 2Ro (6.39)

or,

w2 =
n̂ · k̂∣∣∣n̂ · k̂

∣∣∣

√
2E

1

2

σ3

du1

dy
, if du1/dy > 2Ro (6.40)

where

σ =

∣∣∣∣1 − 1

2Ro

du1

dy

∣∣∣∣
1

4

. (6.41)

The importance of Eqs. (6.39) and (6.40) should not be underestimated since they are coun-

terparts of the equation of Greenspan, Eq. (6.28), and are expected to find applications in

many other similar situations.

6.2.4 The Stewartson Layer

Now let us turn to the Stewartson layer. Let z̄ = z − 1
2 , ū3 = u3 − u1 and ϕ̄3 = ϕ3 − ϕ1 =

ϕ3 − g1E
1

2 z̄, then as Ro À 1, E ¿ 1, the linear problem is

− 2

E

∂ϕ̄3

∂z̄
=

{
∂2

∂y2
+

∂2

∂z̄2

}
ū3, (6.42)

2

E

∂ū3

∂z̄
=

{
∂2

∂y2
+

∂2

∂z̄2

}2

ϕ̄3. (6.43)

with the boundary conditions

at z̄ = ±1

2
, ū3 = −u1, ϕ̄3 = −ϕ1,

∂ϕ̄3

∂z̄
= −g1E

1

2 , (6.44)

at y = 0, ū3 = −u1, ϕ̄3 = −ϕ1,
∂ϕ̄3

∂y
= 0. (6.45)

Notice it is enough to consider the Stewartson layer at y = 0 only since the layer at y = 1 can

be easily obtained by substituting ȳ = 1− y into above formulae. Also it will be easier to find

solutions only satisfying the conditions out of the Ekman layers first. We will add a subscript
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“s” to such solutions. Since the Ekman layer is thin as E ¿ 1, the condition, Eq. (6.44), is

replaced by

at z̄ = ±1

2
, ū3s = ϕ̄3s = 0,

∂ϕ̄3s

∂z̄
= −g1E

1

2
.
= 0. (6.46)

Following the method of Stewartson (1957), the above system can be solved. The solution is

u3s = u1

[
1 − exp(−

√
2ξ) −

√
2E

1

4 F (θ, z)
]
, (6.47)

ϕ3s = g1E
1

2

{
(z − 1

2
)[1 − exp(−

√
2ξ)] − 2

1

6 E
1

12 G(θ, z)

}
, (6.48)

F (θ, z) =

∞∑

n=1

cos(2nπz)

2nπ

[
exp(−cnθ) − exp(−cnθ

2
)cos(

√
3

2
cnθ + π/3)

]
,

(6.49)

G(θ, z) =
∞∑

n=1

sin(2nπz)

(2nπ)4/3

[
exp(−cnθ) − exp(−cnθ

2
)cos(

√
3

2
cnθ − π/3)

]
,

(6.50)

cn = (4nπ)1/3, ξ = y/E
1

4 , θ = y/E
1

3 . (6.51)

Then the solution satisfying the original boundary conditions, Eqs. (6.44) and (6.45), can be

obtained by incorporating the linear Ekman layer solution, Eqs. (6.24) and (6.25):

u3 = u3s [1 − exp(−η)cosη] , (6.52)

ϕ3 = ϕ3s

[
1 −

√
2exp(−η)cos(η − π

4
)
]
. (6.53)

All the linear results above (that is, as Ro À 1 and E ¿ 1) had also been obtained by Smirnov

(1978). The other results are new.

For the Stewartson layer under moderate rotation numbers, the convection term v∂u/∂y

cannot be ignored in the x−momentum equation. Therefore, the u velocity profile, Eq. (6.52),

will be far from realistic as Ro ∼ O(1). However, from our calculations, it seems that the

secondary flow obtained from linear theory is a rather good estimation of the real situation

for a wide range of rotation numbers. Figure 6.6 shows the comparison of the contours

of stream function and vectors of secondary flow between large eddy simulation (upper half)

and linear theory (lower half) for a Re = 250, Ro = 0.4 case. From this figure we can see

although the vortex center is slightly displaced toward the unstable side by convection in
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Figure 6.6 Stream function contours and secondary flow vectors

the real situation, which the linear theory is not able to reproduce, the other features of the

secondary flow pattern are satisfactorily duplicated. Figure 6.7 shows the comparison between

LES and the linear theory of v and w velocity profiles at different z locations for the Re = 250,

Ro = 0.4 case. As we can see, the agreement is good for z > E1/2 = 0.1, that is, out of

the Ekman layer. And one may notice the case we chose here is, in fact, unfavorable for the

linear theory: the Ekman number is not very low and the rotation number is not very high.

One may expect the agreement to improve if the non-linear rather than linear Ekman layer

solutions are incorporated with the linear Stewartson layer solution for this moderate rotation

number situation. In fact, it is the case. However, we will not pursue along this line further

since a better method to solve for the non-linear Ekman layer will be introduced.

Now we turn to the problem of determining the u velocity in the Stewartson layer at

moderate rotation numbers. For this purpose, the appropriate equation for the Stewartson

layer out of the Ekman layer is

∂ϕ3

∂z

(
∂u3

∂y
− 2Ro

)
=

dϕ1

dz

(
du1

dy
− 2Ro

)
+

1

Re

∂2u3

∂y2
, (6.54)
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Figure 6.7 Secondary flow velocities

with the boundary conditions u3 = 0 at vertical walls. It is easy to verify that v3 = ∂ϕ3/∂z

varies little with z out of the Ekman layer. As a result, u3 also does not change much with z

in this region. Thus, the partial derivatives ∂u3/∂y and ∂2u3/∂y2 can be replaced by corre-

sponding ordinary derivatives in the above equation. Since the stream function, ϕ3, from the

linear theory is still valid for the non-linear cases as discussed previously, this equation is very

simple to solve numerically. Figure 6.8 shows a u velocity profile calculated this way, which is

in good agreement with LES.

6.2.5 Determination of Key Parameters

All velocity field calculations discussed previously were dependent on two parameters: the

u velocity gradient in the central part of the duct, du1/dy, and the magnitude of v velocity,

g1E
1

2 . In order to determine these two parameters, two equations (or conditions) are needed.

One is a compatibility equation relating du1/dy and g1, and another condition is that the

bulk velocity ub should be equal to unity since it is the reference velocity. The compatibility

relation comes from the balance between the Ekman layer and the central duct, for example Eq.
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(6.33). Equation (6.33) should work well as the flow conditions are close to Ro À 1, E ¿ 1, to

which the linear theory can apply. However, under flow conditions away from the linear limit,

Eq. (6.33) fails to give satisfactory estimations of du1/dy and g1. The reason is due to the

assumption of (∂u2/∂y) |y=y0
= (du1/dy) |y=y0

throughout the whole Ekman layer, which may

not be valid. A better choice may be the local similarity assumption proposed by Bennetts and

Hocking (1973). The same authors had employed this method to investigate pressure-induced

flows at high rotation numbers (Bennetts and Hocking, 1974). The innovation of the present

study is that we incorporate the Stewartson layer solution into the local similarity procedure,

which is able to give good estimations of du1/dy and g1.

Within the bottom wall Ekman layer away from the vertical walls, by using scalings Φ =

ϕ/E
1

2 , η = z/E
1

2 , and ξ = 2Roy, the appropriate equations are

∂Φ2

∂η

(
∂u2

∂ξ
− 1

)
− ∂Φ2

∂ξ

∂u2

∂η
=

∂Φ1

∂η

(
du1

dξ
− 1

)
+

1

2

∂2u2

∂η2
, (6.55)

∂Φ2

∂η

∂3Φ2

∂η2∂ξ
− ∂Φ2

∂ξ

∂3Φ2

∂η3
+

∂u2

∂η
=

1

2

∂4Φ2

∂η4
. (6.56)



www.manaraa.com

147

The boundary conditions are

η = 0, u2 = Φ2 =
∂Φ2

∂η
= 0, (6.57)

η → ∞, u2 → u1, Φ2 → Φ1,
∂Φ2

∂η
→ v1. (6.58)

Let u1 = F (ξ) and Φ1 = g1(z − 1/2)G(ξ), then v1 = g1E
1

2 G(ξ). The effects of the Stewartson

layer on the central core are included by adding a function G(ξ) to the stream function. From

the Stewartson layer solutions, we have

G = 1 − exp(−
√

2ζ) − 2
1

6 E
1

12

∞∑

n=1

cos(2nπz)

(2nπ)1/3

[
exp(−cnθ) − exp(−cnθ

2
)cos(

√
3

2
cnθ − π/3)

]
,

(6.59)

cn = (4nπ)1/3, ζ = yw/E
1

4 , θ = yw/E
1

3 . (6.60)

Here yw is the distance from the nearest vertical wall. Since G varies little with respect to z

out of the Ekman layer, we can use z = 1/2 in the above expression. Thus, G is a function

only of y, or ξ. Assuming u2 = F (ξ)f(η) and Φ2 = g1G(ξ)ḡ(η) and substituting them into

Eqs. (6.55) and (6.56), we have

dg

dη
(αf − 1) − βg

df

dη
=

dg

dη
|η→∞ (α − 1) +

1

2

d2f

dη2
, (6.61)

β

(
dg

dη

d2g

dη2
− g

d3g

dη3

)
+

df

dη
=

1

2

d4g

dη4
, (6.62)

α =
dF

dξ
, β =

F

G

dG

dξ
, ḡ =

F

g1G
g. (6.63)

The boundary conditions for f and g are

η = 0, f = g =
dg

dη
= 0, (6.64)

η → ∞, f = 1,
dg

dη
=

g1E
1

2 G

F
, (6.65)

η = ηm, g = 0, (6.66)

where ηm is the point corresponding to z = 1/2. Equations (6.61) and (6.62) serve as an

eigenvalue problem with du1/dy and g1 as eigenvalues. The process to determine these two

parameters is as follows.
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(1) Guess an α;

(2) Guess a g1, then v1 can be obtained from v1 = g1E
1

2 G(ξ);

(3) Calculate the u velocity in the central part of the duct by solving Eq. (6.54), which

gives F . Then β can be computed at any y location;

(4) Solve Eqs. (6.61) and (6.62) and check if boundary conditions for f and g are all

satisfied. If they are satisfied, go ahead to step (5); if not, go back to step (2) to choose

another g1;

(5) Use the Ekman layer solutions, Eqs. (6.32) and (6.37), to calculate the bulk velocity

ub. If ub 6= 1, then go back to step (1) to choose another α; if ub does equal 1, then α and g1

are obtained.

Of course, iterations may be needed to reach satisfactory solutions. More details of step

(4) are given below. Equation (6.62) can be integrated from η = ηm to η once:

β

(
g
d2g

dη2
− dg

dη

dg

dη
+

g2
1EG2

F 2

)
+ (f − 1) =

1

2

d3g

dη3
. (6.67)

Define q = dg/dη then

q(αf − 1) − β
df

dη

∫ η

0
qdη =

g1E
1

2 G

F
(α − 1) +

1

2

d2f

dη2
, (6.68)

β

(
dq

dη

∫ η

0
qdη − q2 +

g2
1EG2

F 2

)
+ (f − 1) =

1

2

d2q

dη2
, (6.69)

with

η = 0, f = q = 0, (6.70)

η → ∞, f = 1, q =
g1E

1

2 G

F
. (6.71)

In practice, the above system is solved in an interval from 0 to ηmax, which is much larger than

ηm. After reaching convergence, the boundary conditions will be changed to

η > ηm, f = 1, q =
g1E

1

2 G

F
,
df

dη
=

dq

dη
= 0. (6.72)

That is, we drop the boundary conditions at η = 0 and set f = 1 and q = g1E
1

2 G/F for

η > ηm. Then q is obtained by integrating Eq. (6.69) backwards from η = ηmax to η = 0. The
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criterion of reaching a satisfactory solutions is

∫ ηm

0
qdη = 0. (6.73)

The above procedure is designed to avoid the influence of the rapidly changing f profile close

to η = 0. Although this procedure does not guarantee that q will always satisfy boundary

conditions at η = 0, it can give good estimations of α and g1. As we have mentioned, the above

system is essentially an eigenvalue problem so we only expect it to give precise eigenvalues.

After these eigenvalues (α and g1) are obtained, the system changes back to a boundary-value

problem and can be used to yield more accurate velocity profiles.

Some results of du1/dy and g1 obtained from the above procedure are listed in Table 6.1

Among these results are the parameters for the Re = 250 and Ro = 0.4 case, which have

Table 6.1 Flow parameters

E = 0.001 E = 0.005 E = 0.01

Ro du1/dy g1 Ro du1/dy g1 Ro du1/dy g1

0.5 -1.29 -0.74 0.1 -1.27 -0.34 0.1 -1.11 -0.45

0.6 -1.29 -0.79 0.2 -1.32 -0.52 0.15 -1.15 -0.56

0.8 -1.27 -0.87 0.3 -1.36 -0.63 0.2 -1.17 -0.67

1.0 -1.25 -0.93 0.4 -1.37 -0.73 0.22 -1.17 -0.7

1.2 -1.23 -0.98 0.5 -1.38 -0.81 0.24 -1.17 -0.75

1.4 -1.21 -1.02 0.6 -1.4 -0.85 0.26 -1.17 -0.78

1.6 -1.2 -1.04 0.7 -1.4 -0.92 0.4 -1.16 -1.0

1.8 -1.17 -1.08 0.8 -1.4 -0.97 0.5 -1.16 -1.12

2.0 -1.17 -1.08 0.9 -1.42 -1.0 0.8 -1.09 -1.42

2.4 -1.13 -1.13

2.8 -1.11 -1.15

been used for some theoretical calculations in previous sections. From these results it can

be observed that du1/dy is roughly a constant at a given Ekman number over wide range of

rotation numbers.

Figures 6.9 and 6.10 show the results of u and v velocity profiles in the Ekman layer based

on the flow parameters obtained. We can see that the local similarity assumption gives a

better shape for the u velocity profile than Eq. (6.32) does as compared with LES. However,
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Figure 6.9 Velocity profiles in the Ekman layer

close to the vertical walls the derivatives with respect to y become important which makes the

situation much more complex; also, the increasing of β as the vertical walls are being reached

will dramatically slow down the convergence speed of the local similarity equations. For these

reasons, the local similarity formulas are not used close to the vertical walls. As mentioned

earlier, Eqs. (6.32) and(6.37) are usually good enough for predicting the u velocity profile and

for calculating the bulk velocity.
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Figure 6.10 Velocity profiles in the Ekman layer, contld

6.2.6 Pressure Drop

Before closing Sec. 6.2, it is of interest to verify our velocity field calculation with experi-

mental and numerical results. Mårtensson et al. (2002) measured the pressure drop in a rapidly

rotating square duct. Pallares et al. (2005) gave a drag formula, f = 4E1/2(Ro/1.09)0.8, based

on their large eddy simulations. As one can see in Fig. 6.3, even with a slight rotation, say

Ro = 0.1, the threshold of transition to turbulence of the flow in a square duct will be increased

to Re
.
= 104. Therefore, we can expect the above obtained analytic laminar flow field will be

valid for the purpose of determining drag in a wide range of Reynolds and rotation numbers.

The present theoretical friction coefficients, which are calculated from the velocity gradients

at each wall, are compared with experimental and numerical results in Fig. 6.11, which shows
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favorable agreement. Here the friction coefficients are defined as f = 8(uτ/ub)
2, where uτ is

the friction velocity, and they are normalized by the friction coefficients for a stationary square

duct at the same Reynolds number.

Ro/Re
10-6 10-5 10-4 10-30.5

1

1.5

2

2.5

3

3.5

4
4.5

5

Experiments (Martensson et al., 2002)
LES (Pallares et al., 2005)
Linear theory (Smirnov, 1978)
Present theory

f/f0

Figure 6.11 Friction coefficients

6.3 Instability of the Rotating Square Duct Flow

6.3.1 Linear Instability Analysis

Conventional linear instability analysis was implemented by superimposing infinitesimal

disturbances q̃ and p̃ on the base flow, which is denoted by ql and pl. In the present research

only temporal modes were considered. The instantaneous velocity and pressure are

q = ql + q̃, p = pl + p̃. (6.74)

Substituting this equation into Eqs. (6.1), (6.2) and (6.3), we have

∇ · q̃ = 0, (6.75)

∂q̃

∂t
+ ql · ∇q̃ + q̃ · ∇ql + 2Rok̂ × q̃ = −∇p̃ +

1

Re
∇2q̃, (6.76)
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∂B̃

∂t
+ ql · ∇B̃ − B̃ · ∇ql + q̃ · ∇Bl − Bl · ∇q̃ − 2Ro

∂q̃

∂z
=

1

Re
∇2B̃.

(6.77)

By assuming the disturbance is of a wave form then the substitution of the perturbations

into the above equations results in an eigenvalue problem. The imaginary part of the complex

phase speed of the perturbation wave determines if the superimposed disturbances grow or

attenuate with time, that is, whether the flow is stable or unstable.

There are many methods to solve the instability eigenvalue problem; for example, the

compound matrix method (Drazin and Reid, 2004). This method can be easily realized if there

is only one equation and its order is not too high. However, we consider the method which

will be introduced next as more satisfactory since it can be used in more general situations.

The method we used to solve all equations to follow was a finite-difference method, very

similar to that of Gary and Helgason (1970). Lagrangian interpolation was used to generate

a nine-point scheme so that both the equation and boundary conditions could be discretized

with small truncation errors. After replacing the ordinary differential equations with finite

difference equations, the system was transformed into the eigenvalue problem |A − cB| = 0.

The implementation of the boundary conditions causes singularities of the coefficient matrix

B, which can be removed by the matrix deduction method of Gary and Helgason (1970). The

difference between our method and that of Gary and Helgason is that instead of using a Q−R

algorithm, we employed Laguerre’s method (Parlett, 1964) to find the eigenvalues of B−1A.

If the grids are not fine enough, spurious eigenvalues may arise together with the genuine one.

However, the genuine eigenvalue can be easily recognized because they usually have a much

larger or smaller real part than that of the spurious eigenvalues.

6.3.2 The S1 Instability Boundary

The S1 instability boundary is related to the instability of the Stewartson layer, which is

analogous to the “roll-cell” instability in rotating channel flows (Lezius and Johnston, 1976).

There are two differences, however, between these two situations. First, the base flow in a

rotating channel is Poiseuille flow, which is simpler than the base flow in a rotating duct.
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Secondly, there exist Ekman layers in rotating ducts so that the “free-stream” velocity profiles

outside Stewartson layers are not constant but change from place to place. Therefore, the

instability analysis has to be a “local” one by assuming the disturbances are not affected by

environments away from the location of interest. In the rotating ducts, this location of interest

is the duct center line z = 1/2, since the onset of instability always happens there.

Assume the disturbances do not vary in the streamwise direction and are of the form

q̃ = ũ̂i + ∇× (ϕ̃î), (6.78)

ũ = u(y)exp[iα(z − ct)], (6.79)

ϕ̃ = ϕ(y)exp[iα(z − ct)], (6.80)

p̃ = p(y)exp[iα(z − ct)], (6.81)

in which α is the wave number and c the complex phase speed.

Substituting Eqs. (6.78) to (6.81) into (6.76) and (6.77) gives

(D2 − α2)u = iαRe
[
(wl − c)u +

(
u′

l − 2Ro
)
ϕ
]
+ RevlDu, (6.82)

(D2 − α2)2ϕ = iαRe
[
(wl − c)(D2 − α2)ϕ + 2Rou

]
+ Revl(D

2 − α2)Dϕ − Rev′′l Dϕ

(6.83)

where D = d/dz and (·)′ = d(·)/dy. The boundary conditions are

u = ϕ = Dϕ = 0 at y = 0, 1. (6.84)

Close to the line z = 1/2, wl
.
= 0.

Equations (6.82) to (6.84) define an eigenvalue problem with c as the eigenvalue. Given any

Re, Ro and α, there may exist one or more c so that the equations have solutions satisfying both

boundary conditions at y = 0 and y = 1. If the imaginary part of c is positive, the disturbance

will increase with time exponentially and the flow is unstable; if the imaginary part of c is

negative, the disturbance will be damped eventually and the flow is stable. Our interest is

to find out the marginal stability state, that is, when the the imaginary part of c vanishes.

Extensive calculations have been carried out with the matrix deduction and Laguerre’s method

mentioned above. The marginal stability curves are shown in Fig. 6.12.
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Figure 6.12 Marginal stability curves

In all these calculations the real parts of c are always of order 10−17 to 10−15 by using

200 grid points, which means the disturbance waves are stationary. This agrees with both the

experimental observations of Smirnov and Yurkin (1983) and numerical simulations of Kheshgi

and Scriven (1985), which showed that the flow pattern after the onset of the Stewartson

instability was a steady one.

The critical rotation number for each given Ekman number is the one located at the “nose”

of the corresponding marginal curve. A comparison between the present theory and the ex-

perimental data of Smirnov and Yurkin (1983) is shown in Fig. 6.13, where a reasonably
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good agreement has been reached. The minimum critical Reynolds number is about 297 in
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Figure 6.13 Comparison between experiment and theory

experiments and our theoretical value is 215. By neglecting vl and repeating the calculations,

it has been found that the effect of the secondary flow is to delay the occurrence of the insta-

bility. Comparing with the rotating channel case, where the critical Reynolds number is 88.53

(Lezius and Johnston, 1976), the particular u velocity profile induced by the secondary flow in

a rotating duct increases the critical Reynolds number considerably.
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6.3.3 The S2 Instability Boundary

As the Stewartson layer becomes unstable, small disturbances can absorb energy from the

base flow and grow with time until they are no longer small. A new steady state, the four-

vortex pattern, arises as the result of such interactions between the disturbances and the base

flow. The S2 instability boundary in Fig. 6.3 shows when these two new vortices begin to

pulsate. For the S2 instability boundary, which has a shape similar to the S1 boundary, one

may suspect that it is caused by waves propagating at an angle with the z axis. However,

the calculations showed that the only two angles at which the instability can occur are 0 and

π/2. The former corresponds to the S1 instability and the latter corresponds to the wave

propagating in the streamwise direction and homogeneous in the z direction. This wave may

cause a wavy deformation of the vortices at the unstable wall, but should not be able to produce

the pulsation of the vortices. Therefore, this wave should not be responsible for the appearance

of the S2 instability boundary. Another possibility, namely the secondary instability, seems to

be a more plausible explanation.

The steady four-vortex flow pattern arising from the S1 instability, of course, is also subject

to disturbances from background noise and can become unstable. One of such secondary

instabilities which is of the greatest relevance to the current S2 instability boundary may be

the Eckhaus instability (Eckhaus, 1965). It considers the steady vortices subject to small z

direction propagating waves. Guo and Finlay (1991) studied the Eckhaus instability of the

finite-amplitude vortices in a rotating channel flow. Their results showed that the Eckhaus

stability region was a small closed area tangent to the primary marginal instability curve. Since

the flow can only be unstable outside of this region, the secondary critical Reynolds number

is higher than the primary critical Reynolds number. We can expect a similar mechanism

exists for the current rotating duct flow. However, to determine the amplitude of the two new

vortices arising from the S1 instability involves complex non-linear processes, not only from

the Reynolds stress but also from the mean flow convection, which is beyond the scope of the

present study and has to be deferred to future research.
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6.3.4 The S3 Instability Boundary

The S3 instability boundary, which indicates when pulsations can be observed in the flow

region where du1/dy − 2Ro < 0, can be described by a single parameter RE =
√

Re/Ro. RE

is indeed a Reynolds number based on the thickness of Ekman layer. The hatched region S3

in Fig. 6.3 is in fact defined by 163 < RE < 208. Therefore it is not unreasonable for one to

relate the S3 boundary with the onset of Ekman layer instability.

The instability of Ekman layer has been studied for a long time. Two types of instabilities,

namely the class A and the class B instabilities, have been identified. The class A instability

is related to the interaction between Coriolis and shear forces and the class B instability is

associated to the inflection point in the boundary layer velocity profile. These instabilities

cause traveling vortex lines within the Ekman layer, which have been extensively studied

experimentally and theoretically. For a review of various analyses and experiments on this

topic, one is referred to the paper of Lingwood (1995).

The Ekman layer profile in a rotating square duct changes not only with z but also with

y, as shown in Fig. 6.5, which is different from the situation that has been the focus of most

previous researches. However, since flow in the central part of the duct shows a linear u velocity

profile and the Ekman layer is controled by the gradient du1/dy, instead of trying to calculate

the instability at each y location, we only give a calculation for an “average” velocity profile,

which is the velocity profile at the plane y = 1/2. The effects of the velocity variation with y

are taken into account by retaining the ∂ul/∂y term in governing equations.

By using a new length scale DE1/2 and still using ub as the velocity scale, the time scale

is DE1/2/ub and the equations for the small disturbances are

∇ · q̃ = 0, (6.85)

RE

(
∂q̃

∂t
+ ql · ∇q̃ + q̃ · ∇ql

)
+ 2k̂ × q̃ = −∇p̃ + ∇2q̃, (6.86)

RE

(
∂B̃

∂t
+ ql · ∇B̃ − B̃ · ∇ql + q̃ · ∇Bl − Bl · ∇q̃

)
− 2

∂q̃

∂η
= ∇2B̃.

(6.87)



www.manaraa.com

159

We use Eqs. (6.34) and (6.35) to approximate the base flow field ql and its derivative:

ul = ulc [1 − cos(ση)exp(−ση)] , (6.88)

vl =
ulc

σ2
sin(ση)exp(−ση), (6.89)

∂ul

∂ξ
=

du1

dξ
[1 − cos(ση)exp(−ση)] , (6.90)

η = z/E1/2, ξ = y/E1/2, σ =

(
1 − 1

2Ro

du1

dy

)1/4

, ulc = u1(y = 1/2).

(6.91)

We assume the disturbances are of banded form and the bands are homogeneous in the longi-

tudinal direction which is at a constant angle ε with the x axis. The disturbances propagate

in the direction normal to the band longitude, which is at an angle ε with the y axis, as shown

in Fig. 6.14. The longitudinal and propagating directions are denoted as x′ and y′ coordinates,

z

x

y

y’

x’

ε

ε

bands

Figure 6.14 The banded disturbances

respectively. Therefore, we have

q̃ = ũ̂i′ + ∇× (ϕ̃î′), (6.92)
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ũ = u(η)exp[iα(ξ′ − ct)], (6.93)

ϕ̃ = ϕ(η)exp[iα(ξ′ − ct)], (6.94)

p̃ = p(η)exp[iα(ξ′ − ct)], (6.95)

ξ′ = y′/E1/2, (6.96)

in which î′ is the unit vector in the x′ direction, α the wave number and c the complex phase

speed. Substitution of Eqs. (6.92) to (6.95) into Eqs. (6.85) to (6.87) gives

(D2 − α2)u = iαRE

[
(vlcosε − ulsinε − c)u −

(
∂ul

∂η
cosε +

∂vl

∂η
sinε

)
ϕ

]
+

+REsinεcosε
∂ul

∂ξ
u +

(
REcos2ε

∂ul

∂ξ
− 2

)
Dϕ, (6.97)

(D2 − α2)2ϕ = −REsinεcosε
∂ul

∂ξ
(D2 − α2)ϕ + iαRE

[
(vlcosε − ulsinε − c)(D2 − α2)ϕ−

−
(

∂2vl

∂η2
cosε − ∂2ul

∂η2
sinε

)
ϕ

]
− REsinεcosε

∂2ul

∂ξ∂η
Dϕ −

−REsin2ε
∂2ul

∂ξ∂η
u +

(
2 − REsin2ε

∂ul

∂ξ

)
Du, (6.98)

where D = d/dη. These two equations together with the boundary condition

η = 0, u = ϕ = Dϕ = 0, (6.99)

η → ∞, Du = ϕ = D2ϕ = 0 (6.100)

constitute an eigenvalue problem. Eigenvalues have been calculated for different combinations

of E, Ro, α and ε. The marginal stability curves are shown in Fig. 6.15. The critical

rotation numbers are shown in Fig. 6.16. The Reynolds number, wave number, phase speed

and band orientation angle at each critical point are listed at Table 6.3.4. The results for the

linear Ekman layer in Table 6.3.4 are due to Lilly (1966) and one can refer to the paper of

Serre et al. (2004) for more recent and more accurate values.

From these numerical results it can be observed that the non-linear Ekman layer behaves

quite differently from its linear counterpart. The critical Reynolds numbers of the non-linear

Ekman layer for both type A and type B instabilities are considerably larger than those of

linear Ekman layer. Roll vortices form in the Ekman layer as a result of these instabilities.
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Figure 6.15 Marginal stability curves

Both phase speed and orientation angle of these roll vortices in the non-linear Ekman layer are

greater than those in the linear Ekman layer.

As E > 0.001 the type A instability occurs at the critical disturbance orientation angle

ε
.
= −44◦. As E < 0.001, the critical angle of the type A instability begins shifting to the linear

Ekman layer limit, ε
.
= −21◦. The other critical parameters of the type A instability experience

similar changes around E = 0.001. Although the critical parameters of the non-linear type B

instability eventually converge to their linear limits as E → 0, this transition process does not

happen when the Ekman number is higher than 0.0002.
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Figure 6.16 shows that the S3 instability boundary is almost coincident with the type B

instability boundary of the Ekman layer, which is reasonable since type B waves are located

farther from the wall than type A waves. Therefore they can be more easily observed in

laboratory. However, to draw a definite conclusion, further experimental measurements are

needed to provide more details of the roll vortices caused by the S3 instability so that the

parameters obtained from the present theory may be tested.

6.3.5 The S4 Instability Boundary

The experiments of Döbner (1959) showed that an abrupt change in the slope of the drag

curves in a rotating square duct occured at a critical Reynolds number RE
.
= 280. This is

the S4 instability boundary shown in Fig. 6.3. This boundary has been reasonably associated

with the onset of the transition to turbulence of the Ekman layer in Smirnov and Yurkin, 1983,

since most resistance in a rotating duct comes from the shear stress in the Ekman layer.

Two mechanisms are most likely to contribute to the occurrence of the S4 instability bound-

ary, namely the absolute instability of the Ekman layer and the wavy instability of the Stew-
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Table 6.2 Critical parameters.

E type RE α cr ε (deg)

0.004 A 101 0.87 0.85 -43.5

B 140 1.05 -0.837 44.0

0.003 A 111 0.8 0.847 -44.0

B 166 0.95 -0.89 49.0

0.002 A 122 0.725 0.837 -44.0

B 194 0.80 -0.923 52.5

0.001 A 102 0.48 0.474 -19.0

B 216 0.7 -0.954 55.5

0.0007 A 95 0.46 0.484 -19.0

B 230 0.65 -0.973 58.0

0.0005 A 88 0.4 0.475 -17.0

B 244 0.58 -0.961 57.5

0.0002 A 72 0.37 0.529 -19.0

B 277 0.49 -0.972 60.0

Linear Ekman layer A 65 0.31 0.567 -20.5

B 110 0.53 0.094 7.5

artson layer. The absolute instability considers if a disturbance generated at a given location

can grow exponentially in time and spread both upstream and downstream of this location.

If it is the case, the instability will contaminate the entire flow field and lead to transition.

Otherwise the unstable disturbance is being swept away from the perturbation source and the

transition will not occur. Lingwood (1995) has studied the absolute instability of the Ekman

layer on a rotating disk. The flow transition between a rotating and a stationary disk has been

studied by Serre et al. (2004). The absolute instability is, however, beyond the scope of the

present research since we will restrict attention to the temporal mode disturbances.

Another possibility that may cause the S4 instability boundary is the wavy instability of

the Stewartson layer, that is, the instability due to the streamwise-propagating disturbances.

One reason that such a possibility may exist is that the unstable wall Stewartson layer also

contributes a significant portion of the total drag besides the Ekman layers, as shown in Fig.

6.17, which gives the LES results of the local shear stress distribution along duct perimeter

for a Re = 5000, Ro = 0.176 case. Therefore the instability of the Stewartson layer may change
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the drag curves. Another reason is due to the asymptotic behavior of the drag curves: since

the abrupt change of the drag curve as Ro → 0 (the stationary duct flow) is triggered by the

streamwise-propagating disturbances, one may expect they still play a similar role in rotating

duct flows.

The wavy instability of the shear layer in rotating cylindrical tanks has been studied ex-

tensively and is still an area of active research. In this scenario it is often called barotropic

instability and the shear layer studied is driven by the differential rotation in the horizontal

wall of the tank relative to a background rotation of the entire system. This shear layer is a

Stewartson layer. One may refer to the paper of Niino and Misawa (1984) and that of Früh

and Read (1999) for more information on this topic.

Busse (1968) studied the shear layer caused by differential rotation of a disc inside a

rotating cylinder filled with fluid. He included the effects of Ekman friction and internal

dissipation in the analysis and obtained an Orr-Sommerfeld type equation (Eq. (3.4) in his

paper). Busse’s method was generalized by Greenspan (1968) and formed the foundation

of much theoretical work thereafter. Niino and Misawa (1984) proposed a quasi-geostrophic
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model to compute the onset of the barotropic instability, which has been shown to be able to

give favorable agreement with experimental results (Früh and Read, 1999). We will apply the

quasi-geostrophic method to the present wavey instability problem.

The starting point is again the governing equations for fluid motion. However, we will use

Ω−1 as the reference time scale instead of using D/ub. The reference length and velocity scales

are still duct side width D and bulk velocity ub. Then, the z−component of vorticity equation

is

∂Bz

∂t
+ ε(q · ∇Bz − B · ∇w) − 2

∂w

∂z
= E∇2Bz, (6.101)

where ε = 1/Ro, which is the Rossby number. The suffix x, y and z here and hereafter are the

x−, y− and z−components of the corresponding vector. The “quasi-geostrophic” assumption

is that u, v and Bz are considered as independent of z and w varies linearly with z. This

assumption is valid in the duct region out of the Ekman layers and as E ¿ 1.

Taking the z−average of Eq. (6.101) and using quasi-geostrophic assumptions, we have

∂Bz

∂t
+ ε

(
u

∂Bz

∂x
+ v

∂Bz

∂y

)
− (2 + εBz)〈

∂w

∂z
〉 = E∇2Bz, (6.102)

where 〈·〉 =
∫ 1
0 ·dz.

Now by using the equation for the induced normal flow at the wall in a non-linear Ekman

layer, Eq. (6.39), together with the assumption that w changes linearly with z, we have

〈∂w

∂z
〉 .

= −E1/2

σ3
Bz, (6.103)

σ
.
=

(
1 − 1

2Ro

du1

dy

)1/4

. (6.104)

Note we do not use Eq. (6.40) because as E ¿ 1 the negative constant du1/dy region occupies

most of the duct.

Substituting Eq. (6.103) into Eq. (6.102) results in

∂Bz

∂t
+ ε

(
u

∂Bz

∂x
+ v

∂Bz

∂y

)
+

E1/2

σ3
(2 + εBz) Bz = E∇2Bz. (6.105)

If a small disturbance q̃, B̃z is superposed on the base flow ql, Bz, the equation for such small

disturbances is

∂B̃z

∂t
+ εul

∂B̃z

∂x
+ ε

(
vl

∂B̃z

∂y
+ ṽ

∂Bz

∂y

)
+ 2

E1/2

σ3
(1 + εBz) B̃z = E∇2B̃z.
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(6.106)

Note it is a common practice to drop the vorticity stretching term εBz〈∂w/∂z〉 in the derivation;

however, this term is retained in the current study since there is no reason to drop it. Also one

may notice that the base flow ql, especially vl and wl, have been significantly modified by the

S1 and S2 instabilities. Since the modified flow field cannot be obtained within the scope of the

present study, the original undisturbed flow field is used as the base flow here. Although this is

not fully satisfactory, we can still expect that some useful and at least qualitative information

can be extracted from the computation.

For the wavy instability we assume the disturbances are of the form

q̃ = ∇× (ϕ̃k̂) + w̃k̂, (6.107)

ϕ̃ = ϕ(y)exp [iα(x − εct)] , (6.108)

B̃z = −∇2ϕ̃ = −(D2 − α2)ϕexp [iα(x − εct)] , (6.109)

then we have

(D2 − α2)2ϕ = iαRe
[
(ul − c)(D2 − α2)ϕ − u′′

l ϕ
]
+ Revl(D

2 − α2)Dϕ +

+
2RE

σ3
(Ro − u′

l)(D
2 − α2)ϕ,

(6.110)

where D = d/dy and (·)′ = d(·)/dy. The boundary condition is ϕ = Dϕ = 0 at y = 0 and

y = 1.

The marginal stability curves at different Ekman numbers are shown in Fig. 6.18. For

all Ekman numbers considered, the real parts of the eigenvalue c at the critical points are

approximately the same, which is about 0.67.

The critical rotation numbers are shown in Fig. 6.19, which show qualitative agreement

with the experimental S4 instability boundary.

If one follows the method of Busse (1968) and Greenspan (1968), one will expand the

disturbances in the powers of E1/2 and end up with the following equation:

(D2 − α2)2ϕ = iαRe
[
(ul − c)(D2 − α2)ϕ − u′′

l ϕ
]
+ Revl(D

2 − α2)Dϕ +
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+Re(
2

RE
+ v′l)(D

2 − α2)ϕ.

(6.111)

It can be observed that the non-linear Ekman layer effect, which is expressed by the σ3 term

in Eq. (6.110), is absent in the above equation; also the factor before v′l is 1 in the above

equation while that before u′
l is 2 in Eq. (6.110) (Note RERo = Re/RE and E1/2ul

.
= −vl as

E ¿ 1 and Ro À 1). We also tested Eq. (6.111) and the resultant critical Rossby number

increases as Ekman number decreases, at least in some Ekman number ranges. This erroneous

result implies that the non-linear Ekman layer effect is very important and cannot be ignored.

Of course, as E ¿ 1 and Ro À 1 both methods give the same results.

6.4 Conclusion

The present study gives a detailed theoretical analysis of the velocity field and the onset

of instabilities of the flow in a rotating square duct. By combining the solutions of linear

Stewartson layer, non-linear Ekman layer and a local-similarity assumption, we are able to give
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the two key parameters, du1/dy and g1, that control the entire velocity field. The theoretical

predictions of the velocity field agree well with numerical simulations and experimental results.

By using linear stability analysis, we give the prediction of the onset of the instability of

the Stewartson layer. Comparing with the rotating channel flow, the secondary flow and the

particular u velocity profile in a rotating duct have the effects of increasing the critical Reynolds

number. The steady four-vortex secondary flow pattern arising from this instability becomes

unstable at a higher critical Reynolds number. This supercritical instability is very possible

an Eckhaus instability. Unfortunately, it is a formidable task to theoretically determine the

velocity field of the four-vortex secondary flow, which is needed to verify this speculation.

For the instabilities observed in the central part and stable side of a rotating duct, we

propose that they are caused by the Ekman layer instabilities. We find that both type A and

type B waves in the current non-linear Ekman layer are quite different with their counterparts

in the linear Ekman layer: the former have considerably larger critical Reynolds number, phase

speed and orientation angle. However, the characteristics of the type A wave become more

and more close to their linear limits as E < 0.001. Such a transition does not happen to the
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type B wave when E > 0.0002.

We relate the abrupt changes of the slopes of the drag curves to the wavy instability of

the Stewartson layer, besides another possibility, namely the absolute instability of the Ekman

layer. A quasi-geostrophic formula is used to include the effects of Ekman friction. From

computation we find that the equation for the non-linear Ekman layer induced normal velocity

should be used, otherwise no reasonable results can be obtained.

The present theoretical results invite tests by more advanced experimental measurements.

Also the Eckhaus instability of the four-vortex pattern and the absolute instability of the

Ekman layer require further analysis. Another possibility which may deserve attention is

combining the Busse-Greenspan method with the quasi-geostrophic formula, so that a more

accurate prediction of the wavy (barotropic) instability of the Stewartson layer can be reached.
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CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS

The present study is summarized in Section 7.1 and the major contributions are listed in

Section 7.2. The conclusions which can be drawn from the current work are given in Section

7.3. Finally, the recommended future work is discussed in Section 7.4.

7.1 Summary

The current thesis presented the idea and realization of large eddy simulation (LES) of

turbulent flows with rotation and heat transfer. Also a theoretical treatment of the velocity

field and instabilities of the rotating duct flow was given.

The common methodology of large eddy simulation was introduced with a special emphasis

on the subgrid-scale (SGS) modeling and boundary conditions. And then the Navier-Stokes

characteristic boundary condition (NSCBC) was introduced. The objective was to incorporate

the NSCBC into the current LES code so that it could handle the thermally developing tur-

bulent flow and at the same time retain the accuracy and efficiency of the implicit LU-SGS

scheme. The details of such incorporation were given and the new code was then validated

with simulations of stationary isothermal turbulent duct flow. The results were compared to

experimental data and DNS results.

The LES formulation was then applied to the stationary turbulent duct flow with wall

heating. Two different heating conditions, constant wall temperature and constant wall heat

flux, were used. For each heating conditions, two heating levels, one small and one large enough

to cause significant property variations, were simulated. The Nusselt numbers obtained were

compared with correlations in the literature.

The turbulent heat transfer in a rotating square duct flow was then simulated. The effects
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of centrifugal buoyancy forces were examined by varying the Grashof number. The resultant

Nusselt number distributions were compared with experimental data.

The velocity field and instabilities of the flow in a rotating square duct was investigated

theoretically. The theory was compared with numerical simulations and experiments.

7.2 Contributions

•The Navier-Stokes characteristic boundary condition (NSCBC) was incorporated into the

lower-upper symmetric Gauss-Seidel (LU-SGS) scheme, which largely extended the capability

of the LES code to simulate the turbulent flows in complex geometry and developing flows.

Based on the author’s work, Wang and Pletcher (2005) further expanded the idea to simulate

supercritical fluid flows. An improvement to the current NSCBC, the so called “vanishing

inviscid flux derivative” method, was made so that the code can handle flow reversal without

any buffer zones.

•To the author’s knowledge, this work gives the first report of LES of thermally developing

turbulent duct flow with constant high heating. There are even no appropriate empirical

correlations in the literature to compare with our results. The current results therefore are

expected to call for more experimental researches in this area. The present work explored the

“relaminarization” phenomenon in turbulent flow under high heating.

•The large eddy simulations of turbulent heat transfer in a rotating square duct was carried

out. This is the first LES simulation of rotating turbulent duct flow with property variations.

Fairly satisfactory agreement between prediction and experimental results of Nusselt num-

ber was achieved. The interaction between the buoyancy, flow pattern and temperature was

interpreted.

•This work is also the first one to give a complete theoretical treatment of the velocity

field and instability of the flow in a rotating duct. The velocity field was determined from first

principles and the pressure drop (drag) obtained without resorting to any empirical formulas.

The instabilities of the Stewartson layer and the Ekman layer were investigated with linear

instability analysis and good agreement between theory and experimental data was reached.
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7.3 Conclusions

From the present work, the following conclusions can be drawn.

•The NSCBC strategy should be incorporated into the original scheme rather than being

used separately. And the current incorporation of NSCBC and LU-SGS scheme is able to

maintain the friction velocity level in the computational domain and can be used to simulate

turbulent flows in complex geometry and developing flows. This scheme was tested by simu-

lating isothermal stationary and rotating square duct flows and very good agreement between

our results and previous DNS and experimental data has been achieved.

•Turbulent duct flows under heating with constant wall temperature and constant wall

heat flux conditions were simulated. The strong heating causes significant property variations

in the fluids and leads the flow to become more laminar-like. The local heat transfer coeffi-

cients decrease as the heat transfer rate increases. The mean velocity and temperature profiles

approach laminar distributions downstream. The turbulent kinetic energy, temperature fluc-

tuations and Reynolds stress also decrease. Heat transfer was found to have obvious impact

on the secondary flows. The secondary flows take part in the momentum and heat transport

and are responsible for the modification of the distributions of wall shear stress and wall heat

flux. Also heating has an effect to decrease the magnitude of turbulent Prandtl number and

make its distribution more uniform.

• In the fully developed isothermal rotating duct flows, the cross-stream fluctuations (〈v′2〉

and 〈w′2〉) obtain their peak values near the stable side rather than near the unstable side

when the rotation number is small. This is due to the contribution of secondary flows on the

turbulent production.

• In the turbulent flow in a heated rotating duct, buoyancy changes the secondary flow

pattern through a delicate force balance. In the outward flows, the opposing buoyancy retards

or even reverses the flow near the stable side. This results in a reduced or even reversed Coriolis

force and in turn, a reduced favorable or even adverse pressure gradient which does not favor

the development of the Ekman layer at the side wall and, as a result, weakens the stable wall

corner rotating cell. In the inward flows, the aiding buoyancy accelerates fluids close to the
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stable wall giving rise to an enhanced favorable pressure gradient which strengthens the Ekman

layer as well as the stable wall corner rotating cell.

• In the turbulent flow in a heated rotating duct, buoyancy influences the temperature (and

as a result, Nusselt number) and mean shear stress distribution on the stable wall not only by

changing the streamwise velocity directly, but also by modifying secondary flow patterns. Since

the Ekman layer transports cold and high speed fluid from the duct interior to the stable wall

and the Stewartson layer transports hot and low speed fluid from the stable side to the duct

interior, in the buoyancy-free flows, the Nusselt number and mean shear stress on the stable

wall obtains their peak values at the corner, while the temperature maximum appears at the

wall-bisector. In the outward flows, the weakened secondary flow results in high temperature

near the stable side corner and a Nusselt number maximum at the wall-bisector. In the inward

flows, the strengthened secondary flow results in high temperature near the central stable wall.

The aiding buoyancy accelerates the hot fluid; thus, a high shear stress appears near the stable

wall-bisector in the inward flows. This explains the discrepancy between the Nusselt number

and shear stress distributions at the stable wall.

• In the turbulent flow in a heated rotating duct, buoyancy affects turbulent kinetic energy

and temperature fluctuation distributions through its contributions to the relevant production

terms. Buoyancy influences the production of turbulent kinetic energy in two ways: by mod-

ifying the mean shear and by acting directly as a buoyancy production term. The latter can

dominate if the buoyancy parameter Gr
εRe2

r
becomes large. It has been found that the secondary

flow pattern has a strong relationship with the vertical heat flux −〈v′T ′〉, which is vital in

the production term of the temperature fluctuations. Buoyancy thus impacts the temperature

fluctuations indirectly by altering the secondary flow pattern.

• In the turbulent flow in a heated rotating duct, there is a strong correlation between the

peripheral distributions of local Nusselt number and mean shear stress at the unstable wall

and the side wall.

•By combining the solutions of linear Stewartson layer, non-linear Ekman layer and a

local-similarity assumption, we are able to give the two key parameters, du1/dy and g1, that
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control the entire velocity field. The theoretical predictions of the velocity field agree well with

numerical simulations and experimental results.

•By using linear stability analysis, we give the prediction of the onset of the instability of

the Stewartson layer. Compared with the rotating channel flow, the secondary flow and the

particular u velocity profile in a rotating duct have the effects of increasing the critical Reynolds

number. The steady four-vortex secondary flow pattern arising from this instability becomes

unstable at a higher critical Reynolds number. This supercritical instability is very possible

an Eckhaus instability. Unfortunately, it is a formidable task to theoretically determine the

velocity field of the four-vortex secondary flow, which is needed to verify this speculation.

•For the instabilities observed in the central part and stable side of a rotating duct, we

propose that they are caused by the Ekman layer instabilities. We find that both type A and

type B waves in the current non-linear Ekman layer are quite different from their counterparts

in the linear Ekman layer: the former have a considerably larger critical Reynolds number,

phase speed and orientation angle. However, the characteristics of the type A wave become

closer and closer to their linear limits as E < 0.001. Such a transition does not happen to the

type B wave when E > 0.0002.

•We relate the abrupt changes of the slopes of the drag curves to the wavy instability of

the Stewartson layer, besides another possibility, namely the absolute instability of the Ekman

layer. A quasi-geostrophic formula is used to include the effects of Ekman friction. From

computation we find that the equation for the non-linear Ekman layer induced normal velocity

should be used, otherwise no reasonable results can be obtained.

7.4 Recommendations for Future Work

•The turbulent heat transfer in a stationary square duct needs more simulations for more

heating levels. One may give a Nusselt number correlation from these numerical results.

• In this work only fairly satisfactory agreement between LES and experiments has been

reached for the Nusselt number distributions at each wall of a rotating duct. A possible reason

is that we did not consider the conduction of the duct wall. Such a coupled conduction-
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convection simulation is very desired so that more accurate predictions can be made.

•The Eckhaus instability of the four-vortex pattern and the absolute instability of the

Ekman layer require further analysis. Another possibility which may deserve attention is

combining the Busse-Greenspan method with the quasi-geostrophic formula, so that a more

accurate prediction of the wavy (barotropic) instability of the Stewartson layer can be reached.

• It is of great interest to theoretically determine the four-vortex pattern, which arises from

non-linear disturbance-flow interactions. However, this task may be too difficult and one may

begin with the rotating channel flow. In this way, one has the opportunity to test the theories

of Malkus (1956), of Stuart (1958), etc. and to link the many clues of instability and transition

processes together to give a great insight into turbulent flows.
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APPENDIX A. JACOBIAN MATRICES

Notice all the over-bars denoting the filtered variables such as (·), (̃·), (̂·) have been droped

for simplicity. However, their meanings should not be confused with the original unfiltered

variables.

The transformation matrix between the conservative and the primitive variables (see Eq.

2.64) is

[T ] =




1/T 0 0 0 −p/T 2

u/T p/T 0 0 −pu/T 2

v/T 0 p/T 0 −pv/T 2

w/T 0 0 p/T −pw/T 2

cv + 1
2(u2 + v2 + w2)/T pu/T pv/T pw/T −1

2(p/T 2)(u2 + v2 + w2)




(A.1)

Its inverse is

[T ]−1 =




(u2 + v2 + w2)/(2cv) −u/cv −v/cv −w/cv 1/cv

−uT/p T/p 0 0 0

−vT/p 0 T/p 0 0

−wT/p 0 0 T/p 0

(T/p)
[
(u2 + v2 + w2)/(2cv) − T

]
−uT/(pcv) −vT/(pcv) −wT/(pcv) T/(pcv)




(A.2)
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The preconditiong matrix (see Eq. 2.83) is

[Γ] =




R/T 0 0 0 −p/T 2

R/T p/T 0 0 −pu/T 2

R/T 0 p/T 0 −pv/T 2

Rw/T 0 0 p/T −pw/T 2

R
[
cv + 1

2(u2 + v2 + w2)/T
]

pu/T pv/T pw/T −1
2(p/T 2)(u2 + v2 + w2)




(A.3)

Its inverse is

[Γ]−1 =




(u2 + v2 + w2)/(2Rcv) −u/(Rcv) −v/(Rcv) −w/(Rcv) 1/(Rcv)

−uT/p T/p 0 0 0

−vT/p 0 T/p 0 0

−wT/p 0 0 T/p 0

(T/p)
[
(u2 + v2 + w2)/(2cv) − T

]
−uT/(pcv) −vT/(pcv) −wT/(pcv) T/(pcv)




(A.4)

The flux Jacobian matrices (see Eq. 2.87) are

[A] =




u/T p/T 0 0 −pu/T 2

u2/T + R 2pu/T 0 0 −pu2/T 2

uv/T pv/T pu/T 0 −puv/T 2

uw/T pw/T 0 pu/T −puw/T 2

uH/T (p/T )(H + u2) puv/T puw/T −1
2(pu/T 2)(u2 + v2 + w2)




(A.5)

[B] =




v/T 0 p/T 0 −pv/T 2

vu/T pv/T pu/T 0 −pvu/T 2

v2/T + R 0 2pv/T 0 −pv2/T 2

vw/T 0 pw/T pv/T −pvw/T 2

vH/T pvu/T (p/T )(H + v2) pvw/T −1
2(pv/T 2)(u2 + v2 + w2)




(A.6)



www.manaraa.com

178

[C] =




w/T 0 0 p/T −pw/T 2

wu/T pw/T 0 pu/T −pwu/T 2

wv/T 0 pw/T pv/T −pwv/T 2

w2/T + R 0 0 2pw/T −pw2/T 2

wH/T pwu/T pwv/T (p/T )(H + w2) −1
2(pw/T 2)(u2 + v2 + w2)




(A.7)

where

H = cpT +
1

2
(u2 + v2 + w2) (A.8)
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APPENDIX B. MATRICES FOR NSCBC

Using the formulas of [T ]−1 and [A] in Appendix A, we have

[Π] = [T ]−1[A] =




u γp 0 0 0

1/ρ u 0 0 0

0 0 u 0 0

0 0 0 u 0

0 (γ − 1)T 0 0 u




(B.1)

where γ is the specific heat ratio, which is γ = cp/cv = 1 + R/cv.

Let [Π] = [S][Λ][S]−1, where [Λ] is a diagonal matrix with elements which are eigenvalues

of [T ]−1[A], then the rows of [S]−1 are the corresponding eigenvectors.

[Λ] =




u + c 0 0 0 0

0 u − c 0 0 0

0 0 u 0 0

0 0 0 u 0

0 0 0 0 u




(B.2)

where c is the local sound speed which is c =
√

γRT .

[S] =




(p/T )[γ/(γ − 1)] (p/T )[γ/(γ − 1)] 0 0 0

c/[(γ − 1)T ] −c/[(γ − 1)T ] 0 0 0

0 0 0 1 0

0 0 0 0 1

1 1 1 0 0




(B.3)
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[S]−1 =




(γ − 1)T/(2γp) (γ − 1)T/(2c) 0 0 0

(γ − 1)T/(2γp) −(γ − 1)T/(2c) 0 0 0

−(γ − 1)T/(γp) 0 0 0 1

0 0 1 0 0

0 0 0 1 0




(B.4)

The “wave vector ”L is defined by L = [Ξ]∂W

∂x = [Λ][S]−1 ∂W

∂x . The matrix [Ξ] is

[Ξ] =




(u + c)(γ − 1)T/(2γp) (u + c)(γ − 1)T/(2c) 0 0 0

(u − c)(γ − 1)T/(2γp) −(u − c)(γ − 1)T/(2c) 0 0 0

−u(γ − 1)T/(γp) 0 0 0 u

0 0 u 0 0

0 0 0 u 0




(B.5)

and its inverse is

[Ξ]−1 =




p
(u+c)T

γ
γ−1

p
(u−c)T

γ
γ−1 0 0 0

c
(u+c)(γ−1)T − c

(u−c)(γ−1)T 0 0 0

0 0 0 1/u 0

0 0 0 0 1/u

1/(u + c) 1/(u − c) 1/u 0 0




(B.6)
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APPENDIX C. MOLECULAR DYNAMICS SIMULATIONS OF

FLUID FLOW IN A ROTATING CHANNEL

Introduction

In this chapter1, molecular dynamics (MD) simulations of a Lennard-Jones liquid flowing

through a rotating nano-scale channel are presented.

Fluid flows under a rotating frame are of engineering interest and have been extensively

studied. The researches in this field can be put into three categories: theoretical, experimental

and numerical. Traditionally, macroscopic hydrodynamic equations such as the Navier-Stokes

equations are used in numerical simulations. In the past two decades, MD simulation has

attracted more and more attention for it can provide detailed information about the flow field.

Most previous MD simulations focused on unidirectional flows, such as Couette and Poiseuille

flows (Thompson and Troian, 1997; Xu et al., 2004). The present study tries to extend the

MD method to the rotating flows.

Compared with non-rotating flows, the frame rotation will cause fictional centrifugal and

Coriolis forces inside the fluids. The Coriolis force is an apparent force the fluid feel according

to an observer rotating with the frame. A well known example of the effects of Coriolis force

is the wind circulation. The Coriolis force is given by −2m~Ω × ~V where m is the mass of the

particle, ~Ω the angular velocity vector of rotation and ~V is the particle velocity vector. In

the present simulation, the channel is rotating around y axis (see Fig. C.1), thus, the Coriolis

forces are along x and z directions with magnitudes 2mΩVz and 2mΩVx, respectively.

The centrifugal force and all other driving forces like pressure drop are combined into

1This chapter is based on a paper published in the Proceedings of ASME Integrated Nanosystems Conference,

September 2005, University of California, Berkeley.
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Flow directionx
z

y
Figure C.1 Domain of the rotating channel

one ”gravity” g in the x direction to drive the flow. It has been found in the macroscopic

rotating channel flow that the Coriolis force causes a stream wise velocity gradient dVx

dz = 2Ω

in the central part of the channel which can be easily deduced from the reduced Navier-Stokes

equation of x momentum:

Vz
dVx

dz
= 2ΩVz (C.1)

The pressure gradient dP
dz is equal to −2ΩVx so that it can balance the Coriolis force. Near the

walls, the viscous force balances the other forces and the non-slip condition holds.

By doing the molecular dynamics simulation, it is hoped that a better understanding of

the phenomenon in the rotating channel can be obtained. It is also of interest to compare the

MD results with results from macroscale calculations.
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Simulation Method

Potential Model

As Fig. C.2 shows, any fluid particle i will interact with liquid particle j and wall particle

jw. Besides these particle-particle interactions, the liquid molecule also will feel external forces,

namely, the “gravity” force and Coriolis force. The Lennard-Jones pairwise potential is used

for the interactions between fluid/fluid and fluid/wall molecules, which is written as

V (r) = 4ε[(
σ

r
)
12

− (
σ

r
)
6
]. (C.2)

The force between two fluid molecules i and j is

Fij(r) =





24 ε
σ [2(σ

r )13 − (σ
r )7] ~rij/| ~rij |, if r < rc

0, otherwise
(C.3)

where rij = | ~rij |, ~rij = ~ri − ~rj . The interaction between fluid molecule and wall molecule has

similar expression:

Fijw(r) =





24
εwf

σwf
[2(

σwf

r )
13 − (

σwf

r )
7
] ~rijw/| ~rijw |, if r < rcw

0, otherwise
(C.4)

where σwf and εwf are the length scale and energy scale for the fluid-wall system. The cut-off

distance rc between liquid molecules is set to be 2.5σ and the cut-off distance rcw between

liquid and wall molecules is set to be 2.5σwf . The equations of motion are solved by the Verlet

algorithm. It is convenient to use the reduced quantities

r? = r
σ t? = t

σ

√
ε F ? = Fσ

ε g? = mgσ
ε

V ? = V
√

m/ε T ? = kBT
ε Ro = 2Ωσ

√
m/ε n? = nσ3

(C.5)

and omit the asterisk if no confusion can occur. Thus, the total force acting on a fluid molecule i

is 24
∑N

j 6=i,j=1

(
2

|rij
13|

− 1
|rij

7|

)
(~ri−~rj)
|rij |

+24
εwf /ε
σwf /σ

∑Nw

jw=1

[
(

σwf

σ )
13 2

|rijw
13|

− (
σwf

σ )
7 1
|rijw

7|

]
(~ri− ~rjw )
|rijw | +

(g + Ro · Vz)~i − Ro · Vx
~k. Here ~i and ~k are the unit vector of the x and z axes, respectively.

N is the number of fluid particles and Nw is that of wall particles. It can be seen that the

rotating channel flow is controlled by the parameters of liquid particle number N , wall particle

number Nw, length scale ratio σwf/σ, energy scale ratio εwf/ε, non-dimensional gravity force

g, rotation number Ro and the geometry.
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Lz

Lx

Ly

wall molecule jw

molecule i

molecule j

"gravity" force

Coriolis force

Figure C.2 Sketch of the forces acted on molecule i

Initial Conditions

The initial configuration of wall molecules is assigned so that molecules are evenly located

on the two walls. All fluid molecules are initially located at the sites of a FCC lattice with a

random distributed displacement. This arrangement always causes unphysically large poten-

tials. To avoid this, a Monte Carlo-like process is used to reduce the system potential until

a more reasonable new structure is achieved. Randomly distributed fluid particle velocities

are assumed to initiate the calculation. In the beginning of the simulation the fluid molecules

are allowed to move without applying external forces until the thermodynamic equilibrium is

reached. At the same time, the fluid molecule velocities are rescaled so that the fluid tem-

perature is equal to the initial fluid temperature. The program will store the results such as

locations and velocities of molecules in a restart file so that it can be read when the program

is restarted.
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Boundary Conditions

Periodic boundary conditions are applied on the fluid boundary (x and y directions) of the

computational domain. On the wall boundary (z direction), specular wall conditions are used.

In fact, when the liquid particle is close to the solid wall surface, the repulsive force between it

and wall particles will push the liquid particle away from the wall. However, it is still possible

for some liquid particles to “leak” from the box. If it happens, then the program will reflect

them back into the box, as Fig. C.3 shows.

wall

n-1 time step

n time step

n+1 time step

Figure C.3 Reentry mechanism

A crucial problem is the dissipation of the heat generated by the driving force. The work

done by the external force is partly converted into heat and increases the temperature of the

fluid. It is a common practice to use a thermostat to keep the temperature constant. However,

a thermostat requires additional free parameters which maybe result in some arbitrariness in

the results. In the present simulation, a more physically meaningful approach, wall temperature
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scaling (WTS) is adopted following Heinbuch and Fischer (1989). That is, the velocities are

scaled down to keep the local kinetic temperature constant in the fluid layer closest to the wall

and equal to the initial equilibrium temperature. In the present simulation, the fluid molecules

with distance away from wall less than 1 will be rescaled.

Parameter Averaging

The MD simulation needs a suitable time step. In the current simulation, a time step

∆t = 0.0005 was chosen. After integrating for about 200, 000 steps, the system reached steady-

state. The mean value distribution of variables such as velocity, number density are computed

as a function of z. An identity function Hn(i, j) is defined as

Hn(i, j) =





1, if(n − 1)∆z < zj
i < n∆z

0, otherwise
(C.6)

where n means the nth slab in z direction, i means the ith fluid particle and j represents the

jth time step. The average number density in the nth slab from time step Jn to Jm is

n =

∑jm

j=jn

∑N
i=1 Hn(i, j)

LxLy∆z(Jm − Jn + 1)
(C.7)

The slab average velocity from time step Jn to Jm is

u(n) =

∑jm

j=jn

∑N
i=1 Hn(i, j)V j

x,i∑jm

j=jn

∑N
i=1 Hn(i, j)

(C.8)

Results

Verification of the Present MD Code

Two cases were performed to verify the current MD code. The first is the slip flow confined

between two parallel plates, which is compared with the results of Thompson and Troian

(1997). The geometry considered is two parallel walls with one stationary and another one

moving at a constant speed in the x direction. The domain is 12.51σ×7.22σ×24.57σ. 1000 fluid

particles with 100 wall particles were used in this case. The other parameters are εwf/ε = 0.6,

σwf/σ = 1.0.
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Figure C.4 Mean axial velocity distributions (Couette flow)

The result is shown in Fig. C.4. It can be observed that good agreement between the

current simulation and the previous one is obtained. The small wiggles in the present result

are due to the not-long-enough averaging steps.

Another test case is Poiseuille flow. That is, a flow is confined between two parallel plates

and driven by a constant body force g. This type of flow also can be considered a special

rotating channel flow with rotation number 0. The non-dimensional driving force g = 0.1. The

other parameters are the same as the Couette flow case. The present MD simulation results

are compared with the solution to the Navier-Stokes equations. The results are shown in Fig.

C.5. The average number density distribution is shown in Fig. C.6, from which we can see

that a sticking layer is formed close the walls, however, the number density distribution is still

symmetrical in the z direction.
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Figure C.5 Mean axial velocity distributions (Poiseuille flow)

Rotating Channel Cases

Several rotating channel cases were simulated. They belong to two different geometries.

One is the same as the above setting, 12.51σ× 7.22σ× 24.57σ and another is a cubic with side

length 12σ. The number of wall particles for the cubic geometry is 400. The results of the

former geometry are shown in Fig. C.7 and Fig. C.8. Here two different rotation numbers, 0.1

and 0.5 are used.

From above results we can see that as the rotation number increases, the velocity shifts

more toward the top wall, which agrees with the macroscale situation. Rotation causes high

density near the bottom wall and the higher rotation number causes a steeper density gradient.

These phenomena also agree with the macroscale behavior.

The corresponding results for the 12σ × 12σ × 12σ cubic are shown in Fig. C.9 and Fig.

C.10. Some new features appeared in these results. One is the coupling region near the
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wall, which shows discontinuity in the velocity and density profile. This is caused by the

stronger interaction between fluid particles with wall particles. It is of interest that when the

fluid/wall molecules interactions are strong, even the forces between them are repulsive, the

fluid particles behave like they feel attractive forces. This had been proved by Boltzmann (1896

& 1898). Another feature is that the density near the bottom wall shows much fluctuation,

especially at high rotation number, while the fluctuations at the top wall decrease as rotation

number increases. The fluctuation is due to the strong fluid/wall molecules interactions that

cause the layered structures near wall surface. However, it is difficult to explain why the

fluctuation numbers change across the channel. It also can be observed that the frequency of

the fluctuation does not change much when rotation number varies. Finally, the kinetic energy

distributions are shown for the cubic geometry in Fig. C.11. It can be seen that the kinetic

energy distributions are similar to the axial velocity distributions but more continuous. This
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distribution implies that, as their macroscale counterpart, the heat transfer is higher on the

top wall than that on the bottom wall.

Final Remarks

In this study, the molecular dynamics (MD) simulation was employed to investigate a flow

of liquid in rotating nanoscale channels. Several features of the simulation code include: wall

particles; boundary conditions other than periodic boundary conditions; reentry mechanism;

wall temperature rescale; parameter averaging, etc.

Two simple flows, Couette flow and Poiseuille flow were used to verify the code. Good

agreement between the present calculations and exact solutions has been obtained. Then

rotating channel cases were simulated. The simulations have been conducted in two geometries.

It has been found that geometry, magnitude of driving force and rotation number, particle
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numbers and scale parameters have enormous effects on the results.

When the rotation number increases, the streamwise velocity profile shifts more toward the

top wall and becomes more unsymmetrical. At the same time the number density gradient

increases. It is also observed that the near-bottom-wall multi-layer structures under strong

fluid/wall interactions become more obvious when rotation number increases. The structures

near the top wall show a contrary trend. There is a need to develop theoretical models to

explain such phenomena.
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